A Novel Framework for Scalable Resilience Analyses in Complex Networks

A Novel Framework for Scalable Resilience Analyses in Complex Networks
Author: Sai Munikoti
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download A Novel Framework for Scalable Resilience Analyses in Complex Networks Book in PDF, Epub and Kindle

Resilience has emerged as a crucial and desirable characteristic of complex systems due to the increasing frequency of cyber intrusions and natural disasters. In systems such as power grids and transportation networks, resilience analysis typically deals with the assessment of system robustness in terms of identifying and safeguarding key system attributes. Robustness evaluation methods can be broadly classified into two types, namely network-based and performance-based. Network-based methodologies involve topological properties of the system, whereas performance-based methods deal with specific performance attributes such as voltage fluctuations in a power distribution network. Existing approaches to evaluate robustness have limitations in terms of (1) inaccurate modeling of the underlying system; (2) high computational complexity; and (3) lack of scalability. This dissertation addresses these challenges by developing computationally efficient frameworks to identify key entities of the system. First, it develops a probabilistic framework for a performance-based robustness attribute. Specifically, using power grid as a case study, this work focuses on the performance measure of interest, i.e., voltage fluctuations. This work first derives an analytical approximation for voltage change at any node of the network due to a change in power at other nodes of a three-phase unbalanced radial distribution network. Next, the probability distribution of voltage changes at a certain node due to random power changes at multiple locations in the network is derived. Then, these distributions with information theoretic metrics are used to derive a novel voltage influencing score (VIS) that quantifies the voltage influencing capacity of nodes with distributed energy resources (DERs) and active loads. VIS is then employed to identify the dominant voltage influencer nodes. Results demonstrate the high efficacy and low computational complexity of the proposed approach, enabling various future applications (e.g., voltage control). In the second part, this dissertation emphasizes on network-based robustness measures. Particularly, it focuses on the task of identifying critical nodes in complex systems so that preemptive actions can be taken to improve the system's resilience. Critical nodes represent a set of sub-systems and/or their interconnections whose removal from the graph maximally disconnects the network, and thus severely disrupts the operation of the system. The majority of the critical node identification methods in literature are based on an iterative approach, and thus suffer from high computational complexity and are not scalable to larger networks. Therefore, this work proposes a scalable and generic graph neural network (GNN) based framework for identifying critical nodes in large complex networks. The proposed framework defines a GNN-based model that learns the node criticality score on a small representative subset of nodes and can identify critical nodes in larger networks. Furthermore, the problem of quantifying the uncertainty in GNN predictions is also considered. Essentially, Assumed Density Filtering is used to quantify aleatoric uncertainty and Monte Carlo dropout captures uncertainty in model parameters. Finally, the two sources of uncertainty are aggregated to estimate the total uncertainty in predictions of a GNN. Results in real-world datasets demonstrate that the Bayesian model performs at par with a frequentist model. Furthermore, the combinatorial case of critical node identification is also addressed in this dissertation, where the node criticality scores would be associated with a set of nodes. This simulates a concurrent scenario where multiple nodes are being disrupted simultaneously. Essentially, this problem falls under the generic category of graph combinatorial problems. This problem is approached through a novel deep reinforcement learning (DRL) based framework. Specifically, GNNs are used for encoding the underlying graph structure and DRL for learning to identify the optimal node sequence. Moreover, the framework is first developed for Influence Maximization (IM), where one is interested in identifying a set of seed nodes, which when activated, will result in the activation of a maximal number of nodes in the graph. This generic framework can be used for various use-cases, including the identification of critical nodes set related to concurrent disruption. The results on real world networks demonstrate the scalability and generalizability of the proposed methodology. Thirdly, this dissertation presents a comparative study of different performance and network-based robustness metrics in terms of ranking critical nodes of a power distribution network. The efficacy of failure-based metrics in characterizing voltage fluctuations is also investigated. Results show that hybrid failure-based metrics can quantify voltage fluctuations to a reasonable extent. Additionally, several other challenges in existing robustness frameworks are highlighted, including the lack of mechanism to effectively incorporate various performance and network-based resilience factors. Then, a novel modeling framework, namely hetero-functional graph theory (HFGT) is leveraged to model both power distribution networks as well as other dependent infrastructure networks. Results demonstrate that HFGT can address key modeling limitations, and can be used to accurately assess system robustness to failures.

Multidimensional Complex Systems - Transition Distributions as a Resilience Measure

Multidimensional Complex Systems - Transition Distributions as a Resilience Measure
Author: Shivank Kirit Shah
Publisher:
Total Pages: 127
Release: 2019
Genre: Electronic dissertations
ISBN:

Download Multidimensional Complex Systems - Transition Distributions as a Resilience Measure Book in PDF, Epub and Kindle

Complex networks can be observed in many areas ranging from ecological and biological to technical systems. Complex systems have many interacting components which make their dynamics non-linear. This makes it difficult to calculate important properties of the system such as resilience. The resilience of a system is how persistent the system is against external perturbations. Node centrality determines the importance that a node plays in the effective working of a network. The effect node centrality plays on the transition taking place was explored. Resilience has been defined based on the fraction of nodes that needs to be removed before the system fails. The fraction of nodes to be removed have been calculated statistically by calculating the centroid of the transition distribution. The logic used for defining resilience this way was that if the system transitions into the unwanted lower equilibrium state after a small perturbation it has a lower resilience than the system which transitions to that state after greater perturbation. The values of resilience obtained from the transition distribution agree with the trend in resilience shown by the effective control parameter, [Beta]_eff. It was concluded that the node centrality plays an important part in the transition distribution and hence it is important to identify the important or the most central nodes in the system also known as 'hubs'. The current work proposes to lay a foundation to predict the dynamics of the same complex network with the help of Artificial Neural Networks. The recurrent Artificial Neural Networks have been trained using the data obtained by solving the set of non-linear ordinary differential equations which describe the spatial and temporal dynamics of the system. These equations have been solved numerically by a self-developed solver based on the Runge Kutta 4 algorithm. The architecture chosen for the neural network was the Simple Recurrent Neural Network. The Levenberg-Marquardt algorithm was used for training the neural network.

Viability and Resilience of Complex Systems

Viability and Resilience of Complex Systems
Author: Guillaume Deffuant
Publisher: Springer
Total Pages: 227
Release: 2011-08-03
Genre: Social Science
ISBN: 3642204236

Download Viability and Resilience of Complex Systems Book in PDF, Epub and Kindle

One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability

Dynamics On and Of Complex Networks III

Dynamics On and Of Complex Networks III
Author: Fakhteh Ghanbarnejad
Publisher: Springer
Total Pages: 244
Release: 2019-05-13
Genre: Science
ISBN: 3030146839

Download Dynamics On and Of Complex Networks III Book in PDF, Epub and Kindle

This book bridges the gap between advances in the communities of computer science and physics--namely machine learning and statistical physics. It contains diverse but relevant topics in statistical physics, complex systems, network theory, and machine learning. Examples of such topics are: predicting missing links, higher-order generative modeling of networks, inferring network structure by tracking the evolution and dynamics of digital traces, recommender systems, and diffusion processes. The book contains extended versions of high-quality submissions received at the workshop, Dynamics On and Of Complex Networks (doocn.org), together with new invited contributions. The chapters will benefit a diverse community of researchers. The book is suitable for graduate students, postdoctoral researchers and professors of various disciplines including sociology, physics, mathematics, and computer science.

A Game- and Decision-Theoretic Approach to Resilient Interdependent Network Analysis and Design

A Game- and Decision-Theoretic Approach to Resilient Interdependent Network Analysis and Design
Author: Juntao Chen
Publisher: Springer
Total Pages: 105
Release: 2019-07-17
Genre: Technology & Engineering
ISBN: 3030234444

Download A Game- and Decision-Theoretic Approach to Resilient Interdependent Network Analysis and Design Book in PDF, Epub and Kindle

This brief introduces game- and decision-theoretical techniques for the analysis and design of resilient interdependent networks. It unites game and decision theory with network science to lay a system-theoretical foundation for understanding the resiliency of interdependent and heterogeneous network systems. The authors pay particular attention to critical infrastructure systems, such as electric power, water, transportation, and communications. They discuss how infrastructure networks are becoming increasingly interconnected as the integration of Internet of Things devices, and how a single-point failure in one network can propagate to other infrastructures, creating an enormous social and economic impact. The specific topics in the book include: · static and dynamic meta-network resilience game analysis and design; · optimal control of interdependent epidemics spreading over complex networks; and · applications to secure and resilient design of critical infrastructures. These topics are supported by up-to-date summaries of the authors’ recent research findings. The authors then discuss the future challenges and directions in the analysis and design of interdependent networks and explain the role of multi-disciplinary research has in computer science, engineering, public policy, and social sciences fields of study. The brief introduces new application areas in mathematics, economics, and system and control theory, and will be of interest to researchers and practitioners looking for new approaches to assess and mitigate risks in their systems and enhance their network resilience. A Game- and Decision-Theoretic Approach to Resilient Interdependent Network Analysis and Design also has self-contained chapters, which allows for multiple levels of reading by anyone with an interest in game and decision theory and network science.

Resilience of Networked Infrastructure Systems

Resilience of Networked Infrastructure Systems
Author: Mayada Omer
Publisher: World Scientific
Total Pages: 237
Release: 2013
Genre: Business & Economics
ISBN: 9814452823

Download Resilience of Networked Infrastructure Systems Book in PDF, Epub and Kindle

This volume elaborates on both the qualitative and quantitative aspects of resilience. Reviewing the literature exploring the concept of resilience in engineering, it discusses resilience in terms of the various definitions used, the methodologies proposed to characterize resilience, and the metrics put forward to quantify the resilience of specific service infrastructure systems. The review also identifies the key factors that contribute to organizational resilience.The concept of resilience is compared to other system properties such as reliability, robustness, flexibility and agility, by taking into consideration what systems are prepared against (types of failure), the causes of failure in systems (uncertainty), and how systems react to overcome failure (level of adaptability). A review is also provided of several resilience-enabling schemes, which improve resilience by reducing vulnerability and increasing adaptive capacity. The book puts forward a new framework, the Networked Infrastructure Resilience Assessment (NIRA) framework, through which the resilience of systems can be measured by assessing the impact of disruptions on key performance measures. By applying the framework to various case studies, the book demonstrates the ability of the proposed framework to assess resilience across a wide variety of networked infrastructure systems. The case studies probe the resilience of the following critical infrastructure systems in the face of specific disruptive events: telecommunication, transportation, maritime transportation and organizational networks.This text is intended for all levels of academia OCo from undergraduate through to research level OCo as well as professionals and decision-makers involved in the development, analysis and evaluation of infrastructure systems.

Complex Systems and Networks

Complex Systems and Networks
Author: Jinhu Lü
Publisher: Springer
Total Pages: 483
Release: 2015-08-14
Genre: Technology & Engineering
ISBN: 3662478242

Download Complex Systems and Networks Book in PDF, Epub and Kindle

This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.

Network Reliability and Resilience

Network Reliability and Resilience
Author: Ilya Gertsbakh
Publisher: Springer Science & Business Media
Total Pages: 86
Release: 2011-09-05
Genre: Technology & Engineering
ISBN: 3642223745

Download Network Reliability and Resilience Book in PDF, Epub and Kindle

This book is devoted to the probabilistic description of the behavior of a network in the process of random removal of its components (links, nodes) appearing as a result of technical failures, natural disasters or intentional attacks. It is focused on a practical approach to network reliability and resilience evaluation, based on applications of Monte Carlo methodology to numerical approximation of network combinatorial invariants, including so-called multidimensional destruction spectra. This allows to develop a probabilistic follow-up analysis of the network in the process of its gradual destruction, to identify most important network components and to develop efficient heuristic algorithms for network optimal design. Our methodology works with satisfactory accuracy and efficiency for most applications of reliability theory to real –life problems in networks.

Critical Infrastructures Resilience

Critical Infrastructures Resilience
Author: Auroop Ratan Ganguly
Publisher: Routledge
Total Pages: 132
Release: 2018-02-21
Genre: Political Science
ISBN: 1498758649

Download Critical Infrastructures Resilience Book in PDF, Epub and Kindle

This text offers comprehensive and principled, yet practical, guidelines to critical infrastructures resilience. Extreme events and stresses, including those that may be unprecedented but are no longer surprising, have disproportionate effects on critical infrastructures and hence on communities, cities, and megaregions. Critical infrastructures include buildings and bridges, dams, levees, and sea walls, as well as power plants and chemical factories, besides lifeline networks such as multimodal transportation, power grids, communication, and water or wastewater. The growing interconnectedness of natural-built-human systems causes cascading infrastructure failures and necessitates simultaneous recovery. This text explores the new paradigm centered on the concept of resilience by approaching the challenges posed by globalization, climate change, and growing urbanization on critical infrastructures and key resources through the combination of policy and engineering perspectives. It identifies solutions that are scientifically credible, data driven, and sound in engineering principles while concurrently informed by and supportive of social and policy imperatives. Critical Infrastructures Resilience will be of interest to students of engineering and policy.