A Low-complexity Linear and Iterative Receiver Architecture for Multi-antenna Communication Systems

A Low-complexity Linear and Iterative Receiver Architecture for Multi-antenna Communication Systems
Author: David Louis Milliner
Publisher:
Total Pages: 126
Release: 2004
Genre:
ISBN:

Download A Low-complexity Linear and Iterative Receiver Architecture for Multi-antenna Communication Systems Book in PDF, Epub and Kindle

Multi-antenna systems have been shown to significantly improve channel capacity in wireless environments. The focus of this thesis is on the design of low-complexity multi-antenna receiver architectures for communication networks and their demonstration in a real-time wireless environment. Our practical realization of an orthogonal frequency-division multi-antenna receiver is capable of several forms of linear and iterative detection. Our implementation is based on a division-free reformulation of standard minimum mean-squared-error detection algorithms and uses complex dot-products as the basic building blocks of a folded-pipelined architecture. This folded-pipelined architecture provides significant area savings over non-folded approaches. The demonstration of our receiver architecture is carried out on a rapid-prototyping FPGA communication system. This prototype is used to validate our design and complement theoretical and simulated results with real-time laboratory measurements in a typical office environment.

Digital Communication Receiver Algorithms and Architectures for Reduced Complexity and High Throughput

Digital Communication Receiver Algorithms and Architectures for Reduced Complexity and High Throughput
Author: Jun Won Choi
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Digital Communication Receiver Algorithms and Architectures for Reduced Complexity and High Throughput Book in PDF, Epub and Kindle

In this dissertation, efficient receiver algorithms and architectures for digital communications are studied. As the demand for higher data communication rate increases, the dimension of communication systems is rapidly growing, thereby requiring computationally efficient detection and decoding algorithms in the receiver. Hence, it is crucial to develop receiver algorithms that can offer good performance-complexity trade-offs in high dimensional communication systems such as multi-input multi-output (MIMO) systems and systems with a large delay spread. In this dissertation, computationally efficient receiver algorithms and low-power implementation of receiver architectures are investigated. First, a low-complexity near maximum-likelihood (ML) detector, called the reduced-dimension ML search (RD-MLS), is proposed. The main idea of the RD-MLS is based on reduction of search space dimension. That is, a solution is searched over a subset of symbols to reduce the search complexity. In order to minimize the inevitable performance loss due to the search space reduction, a list tree search (LTS) algorithm is employed, which finds the best K candidates over the reduced search space. A final solution is chosen among the K candidates after extension to the full dimension via an MMSE decision-feedback (MMSE-DF) detector. To determine the candidate size, K adaptively, a stopping criterion is incorporated into the LTS. Through computer simulations, we demonstrate that the RD-MLS algorithm achieves significant complexity reduction over the existing near ML detectors while limiting performance loss to within one dB from ML detection. Second, a low complexity MIMO tree detector, called the improved soft-input soft-output M-algorithm (ISS-MA), is presented. The proposed detector is developed for iterative detection and decoding (IDD) systems, which are known to achieve near-optimal detection performance for MIMO channels. In order to improve the performance of tree detection, a look-ahead path metric is employed that accounts for the impact of unvisited paths of the tree via an unconstrained linear MMSE estimator. Based on an analysis of the probability of correct path loss, we show that the improved path metric offers better detection performance than the conventional path metric. We also demonstrate through simulations that the ISS-MA provides a better performance-complexity trade-off than existing soft-input soft-output detection algorithms. Third, a computationally efficient turbo equalization algorithm for underwater acoustic communications is studied. The performances of two popular linear turbo equalizers, a channel estimate-based minimum mean square error TEQ (CE-based MMSE-TEQ) and a direct-adaptive TEQ (DA-TEQ) technique, are compared in the presence of channel estimation errors and adjustment errors of a least mean square (LMS) adaptive algorithm. Next, an underwater receiver architecture built upon the LMS DA-TEQ technique is introduced. To maintain a performance gains over time-varying channels, the convergence speed of the LMS algorithm is improved via two methods: (1) data reusing and gear-shifting LMS and (2) reducing the length of the equalizer by capturing the sparse structure of underwater acoustic channels. In addition, the sparse structure resulting from the underwater channel can be exploited to reduce the complexity of the equalizer and mitigate error propagation. Receiver performance for different modulation orders, channel codes, and hydrophone configurations was examined at a variety of distances, up to 1 km, from the transmitters. Experimental results show great promise for this approach, as data rates in excess of 15 kbit/s could readily be achieved without error. Lastly, an energy efficient estimation and detection problem is formulated for low-power digital filtering. Building on the soft digital signal processing technique that combines algorithmic noise tolerance and voltage scaling to reduce power, a minimum power soft error cancellation (MP-SEC) technique detects, estimates and corrects transient errors that arise from voltage over-scaling. These timing violation-induced errors, called soft errors, can be detected and corrected by exploiting the correlation structure induced by the filtering operation being protected, together with a reduced-precision replica of the protected operation. By exploiting a spacing property of soft errors in certain architectures, MP-SEC can achieve up to 30 % power savings with no SNR loss and up to 55 % power savings with less than 1 dB SNR loss, according to logic-level simulations performed for an example 25-tap frequency-selective filter.

Iterative Receiver Techniques for Data-driven Channel Estimation and Interference Mitigation in Wireless Communications

Iterative Receiver Techniques for Data-driven Channel Estimation and Interference Mitigation in Wireless Communications
Author: Ming Zhao
Publisher:
Total Pages: 412
Release: 2011
Genre: Iterative methods (Mathematics)
ISBN:

Download Iterative Receiver Techniques for Data-driven Channel Estimation and Interference Mitigation in Wireless Communications Book in PDF, Epub and Kindle

Wireless mobile communications were initially a way for people to communicate through low data rate voice call connections. As data enabled devices allow users the ability to do much more with their mobile devices, so to will the demand for more reliable and pervasive wireless data. This is being addressed by so-called 4th generation wireless systems based on orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) antenna systems. Mobile wireless customers are becoming more demanding and expecting to have a great user experience over high speed broadband access at any time and anywhere, both indoor and outdoor. However, these promising improvements cannot be realized without an e±cient design of the receiver. Recently, receivers utilizing iterative detection and decoding have changed the fundamental receiver design paradigm from traditional separated parameter estimation and data detection blocks to an integrated iterative parameter estimator and data detection unit. Motivated by this iterative data driven approach, we develop low complexity iterative receivers with improved sensitivity compared to the conventional receivers, this brings potential benefits for the wireless communication system, such as improving the overall system throughput, increasing the macro cell coverage, and reducing the cost of the equipments in both the base station and mobile terminal. It is a challenge to design receivers that have good performance in a highly dynamic mobile wireless environment. One of the challenges is to minimize overhead reference signal energy (preamble, pilot symbols) without compromising the performance. We investigate this problem, and develop an iterative receiver with enhanced data-driven channel estimation. We discuss practical realizations of the iterative receiver for SISO-OFDM system. We utilize the channel estimation from soft decoded data (the a priori information) through frequency-domain combining and time-domain combining strategies in parallel with limited pilot signals. We analyze the performance and complexity of the iterative receiver, and show that the receiver's sensitivity can be improved even with this low complexity solution. Hence, seamless communications can be achieved with better macro cell coverage and mobility without compromising the overall system performance. Another challenge is that a massive amount of interference caused by MIMO transmission (spatial multiplexing MIMO) reduces the performance of the channel estimation, and further degrades data detection performance. We extend the iterative channel estimation from SISO systems to MIMO systems, and work with linear detection methods to perform joint interference mitigation and channel estimation. We further show the robustness of the iterative receivers in both indoor and outdoor environment compared to the conventional receiver approach. Finally, we develop low complexity iterative spatial multiplexed MIMO receivers for nonlinear methods based on two known techniques, that is, the Sphere Decoder (SD) method and the Markov Chain Monte Carlo (MCMC) method. These methods have superior performance, however, they typically demand a substantial increase in computational complexity, which is not favorable in practical realizations. We investigate and show for the first time how to utilize the a priori information in these methods to achieve performance enhancement while simultaneously substantially reducing the computational complexity. In our modified sphere decoder method, we introduce a new accumulated a priori metric in the tree node enumeration process. We show how we can improve the performance by obtaining the reliable tree node candidate from the joint Maximum Likelihood (ML) metric and an approximated a priori metric. We also show how we can improve the convergence speed of the sphere decoder (i.e., reduce the com- plexity) by selecting the node with the highest a priori probability as the starting node in the enumeration process. In our modified MCMC method, the a priori information is utilized for the firrst time to qualify the reliably decoded bits from the entire signal space. Two new robust MCMC methods are developed to deal with the unreliable bits by using the reliably decoded bit information to cancel the interference that they generate. We show through complexity analysis and performance comparison that these new techniques have improved performance compared to the conventional approaches, and further complexity reduction can be obtained with the assistance of the a priori information. Therefore, the complexity and performance tradeoff of these nonlinear methods can be optimized for practical realizations.

Multi-Carrier Spread-Spectrum

Multi-Carrier Spread-Spectrum
Author: Khaled Fazel
Publisher: Springer Science & Business Media
Total Pages: 508
Release: 2006-08-12
Genre: Technology & Engineering
ISBN: 1402044372

Download Multi-Carrier Spread-Spectrum Book in PDF, Epub and Kindle

Aims to edit the ensemble of the contributions and research results in this field that have been presented during the 5th International Workshop on Multi-Carrier Spread-Spectrum (MC-SS 2005), held in Oberpfaffenhofen, Germany.

MIMO-OFDM Wireless Communications with MATLAB

MIMO-OFDM Wireless Communications with MATLAB
Author: Yong Soo Cho
Publisher: John Wiley & Sons
Total Pages: 458
Release: 2010-08-20
Genre: Technology & Engineering
ISBN: 0470825626

Download MIMO-OFDM Wireless Communications with MATLAB Book in PDF, Epub and Kindle

MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB®, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB® programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB® codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB® is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB® code examples available for download at www.wiley.com/go/chomimo

Iterative and Adaptive Receivers for Wireless Communication and Radar Systems

Iterative and Adaptive Receivers for Wireless Communication and Radar Systems
Author: Yumin Zhang
Publisher:
Total Pages: 228
Release: 2000
Genre: Signal processing
ISBN:

Download Iterative and Adaptive Receivers for Wireless Communication and Radar Systems Book in PDF, Epub and Kindle

This dissertation is focused on developing new iterative and adaptive algorithms for signal detection/decoding in wireless communication and radar systems. The first part of the dissertation focuses on radar systems and single user communication systems. In Chapter 2, we analyze the performance of the adaptive matched filter (AMF) algorithm for radar systems with mismatched clutter statistics. In Chapter 3, a single user adaptive spatial diversity receiver is developed for operation in correlated non-Gaussian impulsive noise using the expectation maximization (EM) algorithm. The second part of the dissertation deals with the multiuser detection problem. In particular, Chapter 4 develops a low-complexity iterative receiver for multiuser detection of Turbo coded CDMA signals. Chapter 5 studies multiuser detection for CDMA with combined Turbo coding and space-time block coding. Throughout this dissertation, by employing Gaussian mixture models, we try to provide a general framework for signal detection in Gaussian and non-Gaussian impulsive noise.

Coordinated Multi-Point in Mobile Communications

Coordinated Multi-Point in Mobile Communications
Author: Patrick Marsch
Publisher: Cambridge University Press
Total Pages: 507
Release: 2011-07-21
Genre: Technology & Engineering
ISBN: 1139502867

Download Coordinated Multi-Point in Mobile Communications Book in PDF, Epub and Kindle

A self-contained guide to coordinated multi-point (CoMP), this comprehensive book covers everything from theoretical basics to practical implementation. Addressing a wide range of topics, it highlights the potential gains of CoMP, the fundamental degrees of freedom involved and the key challenges of using CoMP in practice. The editors and contributors bring unique real-world experience from running the world's first and largest test beds for LTE-Advanced, and recent field trial results from these tests are presented. With detailed insight into the realistic potential of CoMP as a key technology for LTE-Advanced and beyond, this is a must-read resource for professionals and students who want the big picture on CoMP or require in-depth knowledge of how to build cellular communication systems for the future.

Large MIMO Systems

Large MIMO Systems
Author: A. Chockalingam
Publisher: Cambridge University Press
Total Pages: 335
Release: 2014-02-06
Genre: Computers
ISBN: 1107026652

Download Large MIMO Systems Book in PDF, Epub and Kindle

This exclusive coverage of the opportunities, technological challenges, solutions, and state of the art of large MIMO systems provides an in-depth discussion of algorithms for large MIMO signal processing, suited for large MIMO signal detection, precoding and LDPC code designs. An ideal resource for researchers, designers, developers and practitioners in wireless communications.