Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators
Author: Liang Dai
Publisher: Springer Science & Business Media
Total Pages: 170
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461511453

Download Design of High-Performance CMOS Voltage-Controlled Oscillators Book in PDF, Epub and Kindle

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

A New Architecture for Low-voltage Low-phase-noise High-frequency CMOS LC Voltage-controlled Oscillator

A New Architecture for Low-voltage Low-phase-noise High-frequency CMOS LC Voltage-controlled Oscillator
Author: Anthony Dac Lieu
Publisher:
Total Pages:
Release: 2005
Genre: Electric inductors
ISBN:

Download A New Architecture for Low-voltage Low-phase-noise High-frequency CMOS LC Voltage-controlled Oscillator Book in PDF, Epub and Kindle

Presented in this work is a novel design technique for a low-phase-noise high-frequency CMOS voltage-controlled oscillator. Phase noise is generated from electrical noise near DC, the oscillation frequency, and its harmonics. In CMOS technology, low-frequency flicker noise dominates the close-in phase noise of the VCO. The proposed technique minimizes the VCO phase noise by seeking to eliminate the effect of flicker noise on the phase n6se. This is accomplished by canceling out the DC component of the impulse sensitivity function (ISF) corresponding to each flicker-noise source, thus preventing the up-conversion of low-frequency noise into phase noise. The proposed circuit topology is a modified version of the complementary cross-coupled transconductance VCO, where additional feedback paths are introduced such that a designer can choose the feedback ratios, transistor sizes, and bias voltages to achieve the previously mentioned design objectives. A step-by-step design algorithm is presented along with a MATLAB script to aid in the computation of the ISFs and the phase noise of the VCO. Using this algorithm, a 5-GHz VCO was designed and fabricated in a 0.18m︡ CMOS process, and then tested for comparison with simulated results.

Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks

Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks
Author: Raj Senani
Publisher: Springer
Total Pages: 637
Release: 2015-11-26
Genre: Technology & Engineering
ISBN: 3319237128

Download Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks Book in PDF, Epub and Kindle

This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillators and waveform generators, with their relevant design details and their salient performance features/limitations.

High-Frequency Integrated Circuits

High-Frequency Integrated Circuits
Author: Sorin Voinigescu
Publisher: Cambridge University Press
Total Pages: 921
Release: 2013-02-28
Genre: Technology & Engineering
ISBN: 0521873029

Download High-Frequency Integrated Circuits Book in PDF, Epub and Kindle

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.

Fundamentals of High Frequency CMOS Analog Integrated Circuits

Fundamentals of High Frequency CMOS Analog Integrated Circuits
Author: Duran Leblebici
Publisher: Springer Nature
Total Pages: 360
Release: 2021-03-10
Genre: Technology & Engineering
ISBN: 3030636585

Download Fundamentals of High Frequency CMOS Analog Integrated Circuits Book in PDF, Epub and Kindle

This textbook is ideal for senior undergraduate and graduate courses in RF CMOS circuits, RF circuit design, and high-frequency analog circuit design. It is aimed at electronics engineering students and IC design engineers in the field, wishing to gain a deeper understanding of circuit fundamentals, and to go beyond the widely-used automated design procedures. The authors employ a design-centric approach, in order to bridge the gap between fundamental analog electronic circuits textbooks and more advanced RF IC design texts. The structure and operation of the building blocks of high-frequency ICs are introduced in a systematic manner, with an emphasis on transistor-level operation, the influence of device characteristics and parasitic effects, and input–output behavior in the time and frequency domains. This second edition has been revised extensively, to expand some of the key topics, to clarify the explanations, and to provide extensive design examples and problems. New material has been added for basic coverage of core topics, such as wide-band LNAs, noise feedback concept and noise cancellation, inductive-compensated band widening techniques for flat-gain or flat-delay characteristics, and basic communication system concepts that exploit the convergence and co-existence of Analog and Digital building blocks in RF systems. A new chapter (Chapter 5) has been added on Noise and Linearity, addressing key topics in a comprehensive manner. All of the other chapters have also been revised and largely re-written, with the addition of numerous, solved design examples and exercise problems.

High-speed Communication Circuits

High-speed Communication Circuits
Author: Huiting Chen
Publisher:
Total Pages: 230
Release: 2004
Genre:
ISBN:

Download High-speed Communication Circuits Book in PDF, Epub and Kindle

Voltage Controlled Oscillators (VCO) and filters are the two main topics of focus in this dissertation. A temperature and process compensated VCO, which is designed to operate at 2 GHz and whose frequency variation due to incoming data is limited to 1% of its center frequency, was presented. The test results show that, without process changes present, the frequency variation due to a temperature change from 0°C to 100°C is around 1.1% of its center frequency. This is a reduction of a factor of 10 when compared to the temperature variation of a conventional VCO. A new method of designing continuous-time monolithic filters derived from well-known voltage controlled oscillators (VCOs) was introduced. These VCO-derived filters are capable of operating at very high frequencies in standard CMOS processes. Prototype low-pass and band-pass filters designed in a TSMC 0.25[mu]m process are discussed. Simulation results for the low-pass filter designed for a cutoff frequency of 4.3 GHz show a THD of -40 dB for a 200 mV peak-peak sinusoidal input. The band-pass filter has a resonant frequency programmable from 2.3 GHz to 3.1 GHz, a programmable Q from 3 to 85, and mid-band THD of -40 dB for an 80 mV peak-peak sinusoidal input signal. A third contribution in this dissertation is the design of a new current mirror with accurate mirror gain for low [beta] bipolar transistors. High mirror gain accuracy is achieved by using a split-collector transistor to compensate for base currents of the source-coupled.