A Finite-Element Program for Fracture Mechanics Analysis of Composite Material

A Finite-Element Program for Fracture Mechanics Analysis of Composite Material
Author: SN. Atluri
Publisher:
Total Pages: 13
Release: 1975
Genre: Composite materials
ISBN:

Download A Finite-Element Program for Fracture Mechanics Analysis of Composite Material Book in PDF, Epub and Kindle

An assumed displacement hybrid finite-element procedure developed for treating a general class of problems involving mixed-mode behavior of cracks is used to solve some two-dimensional, fracture mechanics problems involving rectilinear-anisotropic materials. This finite-element program uses four "singular" elements which surround the crack tip and "regular" elements which occupy the remaining region. The singular element has a built-in displacement field of the ?r type with the two modes of stress intensity factors, KI and KII, as unknowns. Displacement compatibility between singular and regular elements is also maintained. Isoparametric transformations are used to derive the stiffness matrix of quadrilateral curved elements. Rectilinear anisotropic, nonhomogeneous, but linear elastic, material properties are considered. The program was checked out by analyzing a bimaterial tension plate with an eccentric crack and a centrally-cracked orthotropic tension plate. The results thus obtained agreed well with those by Erdogan and Biricikoglu, and Bowie and Freese, respectively. The program was then used to analyze two fracture test specimens for which analytical solutions do not exist. The first specimen was the doubly edge-notched tension plate with material principal directions oriented 0°-90° or ±45° to the geometric axes of symmetry and with varying crack length. The second specimen was the three-point bend specimen with material principal directions oriented 0°-90° to the geometric axes of symmetry. Finally, an orthotropic tension plate with an oblique center crack was analyzed. Finite-element solutions of most of these problems do not seem to have appeared in prior literature.

Finite Element Analysis of Composite Materials using AbaqusTM

Finite Element Analysis of Composite Materials using AbaqusTM
Author: Ever J. Barbero
Publisher: CRC Press
Total Pages: 445
Release: 2013-04-18
Genre: Mathematics
ISBN: 1466516615

Download Finite Element Analysis of Composite Materials using AbaqusTM Book in PDF, Epub and Kindle

Developed from the author’s graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with AbaqusTM shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving problems. It explains the concepts involved in the detailed analysis of composites, the mechanics needed to translate those concepts into a mathematical representation of the physical reality, and the solution of the resulting boundary value problems using the commercial finite element analysis software Abaqus. The first seven chapters provide material ideal for a one-semester course. Along with offering an introduction to finite element analysis for readers without prior knowledge of the finite element method (FEM), these chapters cover the elasticity and strength of laminates, buckling analysis, free edge stresses, computational micromechanics, and viscoelastic models and composites. Emphasizing hereditary phenomena, the book goes on to discuss continuum and discrete damage mechanics as well as delaminations. More than 50 fully developed examples are interspersed with the theory, more than 75 exercises are included at the end of each chapter, and more than 50 separate pieces of Abaqus pseudocode illustrate the solution of example problems. The author’s website offers the relevant Abaqus and MATLAB® model files available for download, enabling readers to easily reproduce the examples and complete the exercises. The text also shows readers how to extend the capabilities of Abaqus via "user subroutines" and Python scripting.

Finite Element Analysis of Composite Materials

Finite Element Analysis of Composite Materials
Author: Ever J. Barbero
Publisher: CRC Press
Total Pages: 359
Release: 2007-08-03
Genre: Technology & Engineering
ISBN: 1420054333

Download Finite Element Analysis of Composite Materials Book in PDF, Epub and Kindle

Designing structures using composite materials poses unique challenges due especially to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis; and books on finite element analysis that may or may not demonstrate very limited applications to composites. But now there is third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. More than 50 complete examples using mainly ANSYSTM, but also including some use of MATLAB®, demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available for download online. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials offers a modern, practical, and versatile classroom tool for today's engineering classroom.

fracture mechanics of composites

fracture mechanics of composites
Author: Sendeckyj GP.
Publisher: ASTM International
Total Pages: 236
Release: 1975
Genre:
ISBN:

Download fracture mechanics of composites Book in PDF, Epub and Kindle

Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition

Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition
Author: Ever J. Barbero
Publisher: CRC Press
Total Pages: 369
Release: 2013-12-11
Genre: Mathematics
ISBN: 1466516895

Download Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition Book in PDF, Epub and Kindle

Designing structures using composite materials poses unique challenges, especially due to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis, and books on finite element analysis that may or may not demonstrate very limited applications to composites. But there is a third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials Using ANSYS®, Second Edition. The Only Finite Element Analysis Book on the Market Using ANSYS to Analyze Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. This second edition of the bestseller has been completely revised to incorporate advances in the state of the art in such areas as modeling of damage in composites. In addition, all 50+ worked examples have been updated to reflect the newest version of ANSYS. Including some use of MATLAB®, these examples demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available to students for download online via a companion website featuring a special area reserved for instructors. Plus a solutions manual is available for qualifying course adoptions. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials Using ANSYS, Second Edition offers a modern, practical, and versatile classroom tool for today's engineering classroom.

XFEM Fracture Analysis of Composites

XFEM Fracture Analysis of Composites
Author: Soheil Mohammadi
Publisher: John Wiley & Sons
Total Pages: 1
Release: 2012-08-27
Genre: Science
ISBN: 1118443381

Download XFEM Fracture Analysis of Composites Book in PDF, Epub and Kindle

This book describes the basics and developments of the new XFEM approach to fracture analysis of composite structures and materials. It provides state of the art techniques and algorithms for fracture analysis of structures including numeric examples at the end of each chapter as well as an accompanying website which will include MATLAB resources, executables, data files, and simulation procedures of XFEM. The first reference text for the extended finite element method (XFEM) for fracture analysis of structures and materials Includes theory and applications, with worked numerical problems and solutions, and MATLAB examples on an accompanying website with further XFEM resources Provides a comprehensive overview of this new area of research, including a review of Fracture Mechanics, basic through to advanced XFEM theory, as well as current problems and applications Includes a chapter on the future developments in the field, new research areas and possible future applications of the method

Finite Element Analysis of Composite Materials using Abaqus®

Finite Element Analysis of Composite Materials using Abaqus®
Author: Ever J. Barbero
Publisher: CRC Press
Total Pages: 572
Release: 2023-05-04
Genre: Science
ISBN: 1000871916

Download Finite Element Analysis of Composite Materials using Abaqus® Book in PDF, Epub and Kindle

Developed from the author’s course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus® shows how powerful finite element tools tackle practical problems in the structural analysis of composites. This Second Edition includes two new chapters on "Fatigue" and "Abaqus Programmable Features" as well as a major update of chapter 10 "Delaminations" and significant updates throughout the remaining chapters. Furthermore, it updates all examples, sample code, and problems to Abaqus 2020. Unlike other texts, this one takes theory to a hands-on level by actually solving problems. It explains the concepts involved in the detailed analysis of composites, the mechanics needed to translate those concepts into a mathematical representation of the physical reality, and the solution of the resulting boundary value problems using Abaqus. The reader can follow a process to recreate every example using Abaqus graphical user interface (CAE) by following step-by-step directions in the form of pseudo-code or watching the solutions on YouTube. The first seven chapters provide material ideal for a one-semester course. Along with offering an introduction to finite element analysis for readers without prior knowledge of the finite element method, these chapters cover the elasticity and strength of laminates, buckling analysis, free edge stresses, computational micromechanics, and viscoelastic models for composites. Emphasizing hereditary phenomena, the book goes on to discuss continuum and discrete damage mechanics as well as delaminations and fatigue. The text also shows readers how to extend the capabilities of Abaqus via "user subroutines" and Python scripting. Aimed at advanced students and professional engineers, this textbook features 62 fully developed examples interspersed with the theory, 82 end-of-chapter exercises, and 50+ separate pieces of Abaqus pseudo-code that illustrate the solution of example problems. The author’s website offers the relevant Abaqus and MATLAB model files available for download, enabling readers to easily reproduce the examples and complete the exercises: https://barbero.cadec-online.com/feacm-abaqus/index.html. Video recording of solutions to examples are available on YouTube with multilingual captions.

Numerical Simulation of Delamination Growth in Composite Materials

Numerical Simulation of Delamination Growth in Composite Materials
Author: P. P. Camanho
Publisher:
Total Pages: 26
Release: 2001
Genre: Composite materials
ISBN:

Download Numerical Simulation of Delamination Growth in Composite Materials Book in PDF, Epub and Kindle

The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and predefined crack paths, and that these elements can be used to simulate both delamination onset and growth.

Fracture of Composite Materials

Fracture of Composite Materials
Author: George C. Sih
Publisher: Springer Science & Business Media
Total Pages: 488
Release: 2012-12-06
Genre: Science
ISBN: 9400976097

Download Fracture of Composite Materials Book in PDF, Epub and Kindle

The Second USA-USSR Symposium on Fna~e 06 Compo~~e Mat~a£h took place at Lehigh University, Bethlehem, Pennsylvania, during 9-12 March, 1981. This bilateral program between the U. S. and Soviet Union was organized by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh Uni versity and Dr. Vitauts P. Tamuzs of the Institute of Polymer Mechanics of the Academy of Sciences of the Latvian SSR in Riga. The First Symposium was held in 1978 at Jurmala near the coast of Riga Bay. The primary reasons for initiating this series of Symposia were to dissemi nate present knowledge, to promote interchange of ideas, and to stimulate addi tional studies on the development of composite materials between the U. S. and USSR. Both countries have a vested interest in developing the capability to assess and utilize the attractive mechanical properties of composites so that they can be tailor-made to meet specific design requirements. Despite the in creasing number of published papers and articles, there is no communication more effective than on a person-to-person basis. It is with this objective in mind that a small group of engineers and scientists from the U. S. and USSR have planned to meet every two years to report recent progress on composite material research. The size of this group is approximately sixty (60) participants. The presentation involves about forty (40) technical papers which are published in volume.