2008+ Solved Problems in Electromagnetics

2008+ Solved Problems in Electromagnetics
Author: S. A. Nasar
Publisher: SciTech Publishing
Total Pages: 440
Release: 2008
Genre: Science
ISBN: 1891121464

Download 2008+ Solved Problems in Electromagnetics Book in PDF, Epub and Kindle

This extremely valuable learning resource is for students of electromagnetics and those who wish to refresh and solidify their understanding of its challenging applications. Problem-solving drills help develop confidence, but few textbooks offer the answers, never mind the complete solutions to their chapter exercises. In this text, noted author Professor Syed Nasar has divided the book's problems into topic areas similar to a textbook and presented a wide array of problems, followed immediately by their solutions.

ELECTROMAGNETISM

ELECTROMAGNETISM
Author: ASHUTOSH PRAMANIK
Publisher: PHI Learning Pvt. Ltd.
Total Pages: 922
Release: 2012-09-03
Genre: Science
ISBN: 8120346335

Download ELECTROMAGNETISM Book in PDF, Epub and Kindle

This Third Edition of the book contains more than 60 new problems over and above the original 480 problems of the Second Edition. The additional problems cover the whole range of new topics which will also be introduced in the third edition of the author’s main textbook titled Electromagnetism: Theory and Applications. There are some other new problems necessary to further enhance the understanding of the topics of importance already existing in the book. There has been no change in the philosophy of this book. It has been designed to serve as a companion volume to the main text to help students gain a thorough quantitative understanding of EM concepts that are somewhat difficult to learn. The problems included, as a result of the author’s long industrial and academic experience, illuminate the concepts developed in the main text. Besides meeting the needs of undergraduate students of electrical engineering and postgraduate students and researchers in physics, the book will also be immensely useful to engineers and applied physicists in industry. WHAT IS NEW TO THIS EDITION? 1. A number of new problems on evaluation of a.c. resistance and reactance due to skin effect in cylindrical transmission line configurations, for which the cylindrical polar coordinate system cannot be used. 2. New problems on design and optimization of permanent magnets (now being used in the development of new permanent magnet machines) by using Fröhlich–Kennelly equation for representing the demagnetizing curve and Evershed criterion for optimizing the magnet dimensions and its material volume. 3. Some problems on applications of vector analysis to different geometrical configurations. 4. Some problems on Electrostatics and Magnetostatics in which the method of images has been used as auxiliary support. 5. Nearly 18–20 new problems in the chapter on Electromagnetic Induction making it fully comprehensive and covering all facets of electromagnetic induction. This chapter now contains more than 60 solved problems, none of which are of the formula substitution type, and include problems ranging from annular homopolar machines to phenomenon of pinch effect, identification and separation of flux-linkage as well as flux cutting effects, etc. 6. Some problem on Electromagnetic Waves dealing with surface current speed. 7. Problems on Lorentz transformation in the chapter titled Electromagnetism and Special Relativity.

Electromagnetic Field Theory

Electromagnetic Field Theory
Author: Markus Zahn
Publisher:
Total Pages: 0
Release: 2003
Genre: Electrodynamics
ISBN: 9781575242354

Download Electromagnetic Field Theory Book in PDF, Epub and Kindle

Graphene Optics

Graphene Optics
Author: Ricardo A Depine
Publisher: Morgan & Claypool Publishers
Total Pages: 183
Release: 2017-01-01
Genre: Science
ISBN: 1681743108

Download Graphene Optics Book in PDF, Epub and Kindle

This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.

Electromagnetics for Engineering Students (Part 2)

Electromagnetics for Engineering Students (Part 2)
Author: Sameir M. Ali Hamed
Publisher: Bentham Science Publishers
Total Pages: 475
Release: 2018-04-09
Genre: Technology & Engineering
ISBN: 168108631X

Download Electromagnetics for Engineering Students (Part 2) Book in PDF, Epub and Kindle

Electromagmetics for Engineering Students is a textbook in two parts, Part I and II, that cover all topics of electromagnetics needed for undergraduate students from vector analysis to antenna principles. In both parts of the book, the topics are presented in sufficient details such that the students will follow the analytical development easily. Each chapter is supported by many illustrative examples, solved problems, and the end of chapter problems to explain the principles of the topics and enhance the knowledge of the student. There are a total of 681 problems in the both parts of the book as follows: 162 illustrative examples, 88 solved problems, and 431 end of chapter problems. This part is a continuation of Part I and focuses on the application of Maxwell's equations and the concepts that are covered in Part I to analyze the characteristics of wave propagation in half-space and bounded media including metamaterials. Moreover, a chapter has been devoted to the topic of antennas to provide readers with the fundamental concepts related to antenna engineering. The key features of this part: • In addition to the coverage of classical topics in electromagnetic normally covered in the similar available texts, this part of the book adds some advanced concepts and topics such as: • Application of multi-pole expansion for vector potentials. • More detailed analysis on the topic of waveguides including circular waveguides. • Refraction through metamaterials and the concept of negative refractive index. • Detailed and easy-to follow presentation of mathematical analyses and problems. • An appendix of mathematical formulae and functions.

MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling
Author: Özlem Özgün
Publisher: CRC Press
Total Pages: 428
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 0429854609

Download MATLAB-based Finite Element Programming in Electromagnetic Modeling Book in PDF, Epub and Kindle

This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems
Author: Ozgur Ergul
Publisher: John Wiley & Sons
Total Pages: 484
Release: 2014-04-22
Genre: Science
ISBN: 1118844912

Download The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems Book in PDF, Epub and Kindle

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.

Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain

Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain
Author: Y. Zhang
Publisher: John Wiley & Sons
Total Pages: 367
Release: 2009-06-29
Genre: Science
ISBN: 0470495081

Download Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain Book in PDF, Epub and Kindle

A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.

Electromagnetic Fields (Theory and Problems)

Electromagnetic Fields (Theory and Problems)
Author: Murthy, T.V.S. Arun
Publisher: S. Chand Publishing
Total Pages: 760
Release: 2008
Genre: Technology & Engineering
ISBN: 8121929962

Download Electromagnetic Fields (Theory and Problems) Book in PDF, Epub and Kindle

Electromagnetic Fields