Thermodynamics in the Quantum Regime

Thermodynamics in the Quantum Regime
Author: Felix Binder
Publisher: Springer
Total Pages: 998
Release: 2019-04-01
Genre: Science
ISBN: 3319990462

Download Thermodynamics in the Quantum Regime Book in PDF, Epub and Kindle

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.

Nanoscale Thermoelectrics

Nanoscale Thermoelectrics
Author: Xiaodong Wang
Publisher: Springer Science & Business Media
Total Pages: 520
Release: 2013-11-18
Genre: Technology & Engineering
ISBN: 3319020129

Download Nanoscale Thermoelectrics Book in PDF, Epub and Kindle

For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.

Quantum Thermodynamics and Optomechanics

Quantum Thermodynamics and Optomechanics
Author: Juliette Monsel
Publisher: Springer Nature
Total Pages: 139
Release: 2020-09-18
Genre: Science
ISBN: 3030549712

Download Quantum Thermodynamics and Optomechanics Book in PDF, Epub and Kindle

This thesis demonstrates the potential of two platforms to explore experimentally the emerging field of quantum thermodynamics that has remained mostly theoretical so far. It proposes methods to define and measure work in the quantum regime. The most important part of the thesis focuses on hybrid optomechanical devices, evidencing that they are proper candidates to measure directly the fluctuations of work and the corresponding fluctuation theorem. Such devices could also give rise to the observation of mechanical lasing and cooling, based on mechanisms similar to a heat engine. The final part of the thesis studies how quantum coherence can improve work extraction in superconducting circuits. All the proposals greatly clarify the concept of work since they are based on measurable quantities in state of the art devices.

The Biggest Ideas in the Universe

The Biggest Ideas in the Universe
Author: Sean Carroll
Publisher: Penguin
Total Pages: 305
Release: 2022-09-20
Genre: Science
ISBN: 0593186583

Download The Biggest Ideas in the Universe Book in PDF, Epub and Kindle

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.

Thermodynamics and Synchronization in Open Quantum Systems

Thermodynamics and Synchronization in Open Quantum Systems
Author: Gonzalo Manzano Paule
Publisher: Springer
Total Pages: 411
Release: 2018-07-04
Genre: Science
ISBN: 3319939645

Download Thermodynamics and Synchronization in Open Quantum Systems Book in PDF, Epub and Kindle

This book explores some of the connections between dissipative and quantum effects from a theoretical point of view. It focuses on three main topics: the relation between synchronization and quantum correlations, the thermodynamical properties of fluctuations, and the performance of quantum thermal machines. Dissipation effects have a profound impact on the behavior and properties of quantum systems, and the unavoidable interaction with the surrounding environment, with which systems continuously exchange information, energy, angular momentum and matter, is ultimately responsible for decoherence phenomena and the emergence of classical behavior. However, there is a wide intermediate regime in which the interplay between dissipative and quantum effects gives rise to a plethora of rich and striking phenomena that has just started to be understood. In addition, the recent breakthrough techniques in controlling and manipulating quantum systems in the laboratory have made this phenomenology accessible in experiments and potentially applicable.

Thermodynamics and Quantum Correlations

Thermodynamics and Quantum Correlations
Author: Martí Perarnau Llobet
Publisher:
Total Pages: 195
Release: 2017
Genre:
ISBN:

Download Thermodynamics and Quantum Correlations Book in PDF, Epub and Kindle

Thermodynamics traditionally deals with macroscopic systems at thermal equilibrium. However, since the very beginning of the theory, its range of applicability has only increased, nowadays being applied to virtually every field of science, and to systems of extremely different size. This thesis is devoted to the study of thermodynamics in the quantum regime. It contains original results on topics that include: Work extraction from quantum systems, fluctuations of work, the energetic value of correlations and entanglement, and the thermodynamics of closed quantum many body systems. First, we study work extraction from thermally isolated systems. Here the notion of passive states naturally arises, as those quantum states from which no work can be extracted. We start by characterising the set of passive states, and find the most energetic passive states, a dual family to the well known Gibbs (or thermal) states. Remarkably, passive states have the property of activation: When considered as a whole, several copies of passive states can become nonpassive. We study the dynamics of activation processes, and find a relation between the entanglement generated and the speed of the process. Next, we consider the possibility of extracting work from a system using an auxiliary thermal bath. In this case, according to the second law of thermodynamics, the amount of work is bounded by the free energy difference. We develop corrections to this law which arise from the finite size and the structure of the bath. We go on by studying the fluctuations of work. Fluctuations are particularly relevant for small systems, where their relative size is comparable to the average value itself. However, characterising the fluctuations in the quantum regime is particularly difficult, as measurements generically disturb the state. In fact, we derive a no go result, showing that it is not possible to exactly measure the fluctuations of work in quantum coherent processes. Despite this result, we develop a new scheme that allows for their approximate measurement. An important part of this thesis is devoted to the relation between quantum correlations and work. We start by considering a set of correlated states which are thermal at the local level, in which case the extractable work can only come from the correlations. We compute the amount of work that can be stored in entangled, separable and correlated states with a fixed entropy, by finding the corresponding optimal states and protocols. These results provide fundamental bounds on the potential of different type of correlations for work storage and extraction. Next, we consider the converse scenario, and study the creation of correlations from thermal states. We find thresholds on the maximal temperature for the generation of entanglement. We also work out the minimal work cost of creating different types of correlations, including total correlations, entanglement, and genuine multipartite entanglement. Finally, we study the thermodynamics of closed quantum systems. Here we use one of the most important recent insights from the study of equilibration in quantum systems: Closed many body systems do not equilibrate, but can be effectively described as if they had equilibrated when looking at a restricted, physically relevant, class of observables. Importantly, the corresponding equilibrium state is not necessarily a Gibbs state, but may be very well given by a Generalized Gibbs ensemble state. With this in mind, we develop a framework for studying entropy production and work extraction in closed quantum systems.

Quantum Thermodynamics

Quantum Thermodynamics
Author: Jochen Gemmer
Publisher: Springer Science & Business Media
Total Pages: 318
Release: 2004-12-14
Genre: Science
ISBN: 9783540229117

Download Quantum Thermodynamics Book in PDF, Epub and Kindle

This extended tutorial essay views thermodynamics as an incomplete description of quantum systems with many degrees of freedom. The main goal is to show that the approach to equilibrium - with equilibrium characterized by maximum ignorance about the open system of interest - neither requires that many particles nor is it a precise way of partitioning relevant for the salient features of equilibrium and equilibration. Moreover it is indeed quantum effects that are at work in bringing about universal thermodynamic behaviour of modestly sized open systems. Von Neumann`s concept of entropy thus proves to be much more widely useful than something to be feared, and far beyond truly macroscopic systems in equilibrium.

Quantum Thermodynamic Processes

Quantum Thermodynamic Processes
Author: Guenter Mahler
Publisher: CRC Press
Total Pages: 474
Release: 2014-12-19
Genre: Science
ISBN: 9814463744

Download Quantum Thermodynamic Processes Book in PDF, Epub and Kindle

The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics ha

Quantum Dissipative Systems

Quantum Dissipative Systems
Author: Ulrich Weiss
Publisher: World Scientific
Total Pages: 587
Release: 2012
Genre: Mathematics
ISBN: 9814374911

Download Quantum Dissipative Systems Book in PDF, Epub and Kindle

Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book -- originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions -- delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.

Challenges to The Second Law of Thermodynamics

Challenges to The Second Law of Thermodynamics
Author: Vladislav Capek
Publisher: Springer Science & Business Media
Total Pages: 368
Release: 2006-03-30
Genre: Science
ISBN: 1402030169

Download Challenges to The Second Law of Thermodynamics Book in PDF, Epub and Kindle

The advance of scienti?c thought in ways resembles biological and geologic transformation: long periods of gradual change punctuated by episodes of radical upheaval. Twentieth century physics witnessed at least three major shifts — relativity, quantum mechanics and chaos theory — as well many lesser ones. Now, st early in the 21 , another shift appears imminent, this one involving the second law of thermodynamics. Over the last 20 years the absolute status of the second law has come under increased scrutiny, more than during any other period its 180-year history. Since the early 1980’s, roughly 50 papers representing over 20 challenges have appeared in the refereed scienti?c literature. In July 2002, the ?rst conference on its status was convened at the University of San Diego, attended by 120 researchers from 25 countries (QLSL2002) [1]. In 2003, the second edition of Le?’s and Rex’s classic anthology on Maxwell demons appeared [2], further raising interest in this emerging ?eld. In 2004, the mainstream scienti?c journal Entropy published a special edition devoted to second law challenges [3]. And, in July 2004, an echo of QLSL2002 was held in Prague, Czech Republic [4]. Modern second law challenges began in the early 1980’s with the theoretical proposals of Gordon and Denur. Starting in the mid-1990’s, several proposals for experimentally testable challenges were advanced by Sheehan, et al. By the late 1990’s and early 2000’s, a rapid succession of theoretical quantum mechanical ? challenges were being advanced by C ́ apek, et al.