Aquatic Ecosystems: Interactivity of Dissolved Organic Matter

Aquatic Ecosystems: Interactivity of Dissolved Organic Matter
Author: Stuart Findlay
Publisher: Academic Press
Total Pages: 534
Release: 2003
Genre: Nature
ISBN: 0122563719

Download Aquatic Ecosystems: Interactivity of Dissolved Organic Matter Book in PDF, Epub and Kindle

Overviews of the source, supply and variability of DOM, surveys of the processes that mediate inputs to microbial food webs, and syntheses consolidating research findings provide a comprehensive review of what is known of DOM in freshwater. This book will be important to anyone interested in understanding the fundamental factors associated with DOM that control aquatic ecosystems."--BOOK JACKET.

Aquatic Organic Matter Fluorescence

Aquatic Organic Matter Fluorescence
Author: Paula G. Coble
Publisher: Cambridge University Press
Total Pages: 407
Release: 2014-07-14
Genre: Science
ISBN: 0521764610

Download Aquatic Organic Matter Fluorescence Book in PDF, Epub and Kindle

A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.

Dynamics and Characterization of Marine Organic Matter

Dynamics and Characterization of Marine Organic Matter
Author: N. Handa
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2013-03-09
Genre: Science
ISBN: 9401713197

Download Dynamics and Characterization of Marine Organic Matter Book in PDF, Epub and Kindle

Over the past decade the scientific activities of the Joint Global Ocean Flux Study (JGOFS), which focuses on the role of the oceans in controlling climate change via the transport and storage of greenhouse gases and organic matter, have led to an increased interest in the study of the biogeochemistry of organic matter. There is also a growing interest in global climate fluctuations. This, and the need for a precise assessment of the dynamics of carbon and other bio-elements, has led to a demand for an improved understanding of biogeochemical processes and the chemical characteristics of both particulate and dissolved organic matter in the ocean. A large amount of proxy data has been published describing the changes of the oceanic environment, but qualitative and quantitative estimates of the vertical flux of (proxy) organic compounds have not been well documented. There is thus an urgent need to pursue this line of study and, to this end, this book starts with several papers dealing with the primary production of organic matter in the upper ocean. Thereafter, the book goes on to follow the flux and characterization of particulate organic matter, discussed in relation to the primary production in the euphotic zone and resuspension in the deep waters, including the vertical flux of proxy organic compounds. It goes on to explain the decomposition and transformation of organic matter in the ocean environment due to photochemical and biological agents, and the reactivity of bulk and specific organic compounds, including the air-sea interaction of biogenic gases. The 22 papers in the book reflect the interests of JGOFS and will thus serve as a valuable reference source for future biogeochemical investigations of both bio-elements and organic matter in seawater, clarifying the role of the ocean in global climate change.

Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters

Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters
Author: Christopher L. Osburn
Publisher: Frontiers Media SA
Total Pages: 244
Release: 2017-01-17
Genre:
ISBN: 2889450813

Download Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters Book in PDF, Epub and Kindle

A substantial increase in the number of studies using the optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) as a proxy for its chemical properties in estuaries and the coastal and open ocean has occurred during the last decade. We are making progress on finding the actual chemical compounds or phenomena responsible for DOM’s optical properties. Ultrahigh resolution mass spectrometry, in particular, has made important progress in making the key connections between optics and chemistry. But serious questions remain and the last major special issue on DOM optics and chemistry occurred nearly 10 years ago. Controversies remain from the non-specific optical properties of DOM that are not linked to discrete sources, and sometimes provide conflicting information. The use of optics, which is relatively easier to employ in synoptic and high resolution sampling to determine chemistry, is a critical connection to make and can lead to major advances in our understanding of organic matter cycling in all aquatic ecosystems. The contentions and controversies raised by our poor understanding of the linkages between optics and chemistry of DOM are bottlenecks that need to be addressed and overcome.

Chemical Characterization of Refractory Dissolved Organic Matter

Chemical Characterization of Refractory Dissolved Organic Matter
Author: Neal Ken Arakawa
Publisher:
Total Pages: 151
Release: 2016
Genre:
ISBN:

Download Chemical Characterization of Refractory Dissolved Organic Matter Book in PDF, Epub and Kindle

The primary objective of this thesis was to combine a chemical degradation technique together with an analytical framework centered primarily around gas chromatography (GC) to more fully interrogate the composition of aquatic dissolved organic matter (DOM). Previous studies had suggested that aliphatic compounds could represent a significant fraction of refractory organic matter isolated by solid phase extraction (SPE). These studies had also uncovered the vast complexity of DOM. Gas chromatography coupled to mass spectrometry provides superior separation capability and is ideal for examining complex mixtures of lipid-derived molecules. As such I sought to develop a comprehensive GC analysis methods to provide molecular level information for DOM isolated by solid phase extraction (SPE) onto a hydrophobic resin- PPL (Agilent Bond Elut). In Chapter II, a comprehensive chemical reduction procedure was developed and first applied to the environmental DOM standard Suwannee River Fulvic Acid (SRFA) as a proxy for marine DOM. The resulting hydrocarbons were amenable to comprehensive gas chromatography time-of-flight mass spectrometry (GCxGC-TOF-MS), and effectively resolved into multiple series of alicyclic, unsaturated compounds. This was the first direct demonstration of the isomeric complexity of aquatic DOM. Similar alicyclic compounds were recovered from the reduction of terrestrial source material, implicating resin acids and sterols as potential precursors of SRFA. In Chapter III the reduction process was applied to marine surface DOM from the Scripps Institution of Oceanography Pier, and similar alicylic compounds were found. The GCxGC-TOF-MS identified carbon backbones closely resembling carotenoids, implicating these ubiquitous and highly reactive biomolecules as the source of a significant fraction of DOM accumulating in the marine water column. The structural assignment was supported by the identification of carotenoid derived resonances in two dimensional nuclear magnetic resonance (NMR) spectra, which indicated that these molecules were highly oxidized compared to the parent molecules consistent with their present in DOM. Following up on this work in Chapter IV the carotenoid [beta]-carotene was irradiated with natural sunlight to test the hypothesis that photodegradation was one pathway that converted carotenoids into water-soluble degradation products. The first finding was that the reaction produced a series of compounds identical to compounds isolated from marine DOM. The second important result was that the reaction produced a complex mixture of isomers from a single compound that helps to at least partly explain the compositional diversity in marine DOM. Together, the data in Chapters III and IV allowed us to link a large fraction of DOM to a ubiquitous biomolecule that can now serve as a model for studies examining the formation and fate of DOM that accumulates in the ocean on long timescales. Finally, in Chapter V we sought to examine how the composition of DOM -- both the complex alicyclic fraction and small, polar biomolecules, which are considered a "fresher" signal of biological input -- evolved across a salinity gradient. Although core biochemical classes were present in all regions the data supported in situ production of compositionally similar material rather than mixing across the gradients as proposed in some studies. Together, the chapters in my thesis provide new insight in the composition of dissolved organic matter in marine and terrestrial environments. The thesis also represents the most comprehensive molecular level characterization of DOM isolated by this solid phase extraction method, which is the most commonly used isolation method in the field. My findings also provide an important foundation for future lab-based mechanistic studies of DOM cycling in the marine environment.

Biogeochemistry of Marine Dissolved Organic Matter

Biogeochemistry of Marine Dissolved Organic Matter
Author: Dennis A. Hansell
Publisher: Academic Press
Total Pages: 712
Release: 2014-10-02
Genre: Science
ISBN: 0124071538

Download Biogeochemistry of Marine Dissolved Organic Matter Book in PDF, Epub and Kindle

Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. Features up-to-date knowledge of DOM, including five new chapters The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea Includes chapters that address inputs from freshwater terrestrial DOM

Dissolved Organic Matter in Lacustrine Ecosystems

Dissolved Organic Matter in Lacustrine Ecosystems
Author: K. Salonen
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2012-12-06
Genre: Science
ISBN: 9401124744

Download Dissolved Organic Matter in Lacustrine Ecosystems Book in PDF, Epub and Kindle

Concentrations of dissolved organic matter (DOM) in lakes are often an order of magnitude greater than concentrations of particulate organic matter; nevertheless, the biogeochemical analysis of DOM is described in only a few textbooks on limnology (most thoroughly by Wetzel). The orgins of dissolved organic substances are largely photosynthetic; DOM is either autochthonously synthesized by littoral and pelagic flora through secretions and autolysis of cellular contents, or allochthonously generated in terrestrial systems of the drainage basin, composing largely of humic substances refractory to rapid microbial degradation. The role of DOM in lacustrine ecosystems, as energy source and system regulator, however, is still poorly known. The aim of this book is: (1) to present state-of-the-art reviews of the role of dissolved autochthonous and allochthonous organic matter in pelagial and littoral zones; and (2) to focus attention on poorly understood but critical topics and hence to provide direction for future research activity.