Synthesis and Characterization of Ceria Nanomaterials

Synthesis and Characterization of Ceria Nanomaterials
Author: Nitzia Cheong Ng
Publisher:
Total Pages: 59
Release: 2010
Genre: Cerium dioxide
ISBN:

Download Synthesis and Characterization of Ceria Nanomaterials Book in PDF, Epub and Kindle

Cerium dioxide or ceria, CeO2, has been widely used in industry as catalyst for automotive exhaust controls, chemical mechanical polishing (CMP) slurries, and high temperature fuel cells because of its unique metal oxide properties. This well-known rare metal oxide has high thermal stability, electrical conductivity and chemical diffusivity. Proper synthesis method requires knowledge of reaction temperature, concentration, and time effects on the synthesis. In this work, ceria nanomaterials were prepared via the hydrothermal method using a Teflon autoclave. Cerium nitrate solution was used as the source and three different precursors: NaOH, H2O2, and NH4OH were used as the oxidizing agents. CeO2 nanoplates, nanocubes and nanorods were produced and studied using transmission electron microscopy (TEM), BET specific surface area, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Through characterization, CeO2 nanomaterials showed the presence of mixed valence states (Ce3+ and Ce4+) through XPS spectra. Deconvolution was performed to investigate the ratio of Ce3+/Ce4+ concentration in the synthesized CeO2 nanostructures. Nanocubes showed a higher Ce3+ concentration. CeO2 nanomaterials were found to be mesoporous. Nanoplates synthesized with H2O2, and NH4OH were found with surface areas of 95.11 m2/ g and 62.07 m2/ g, respectively. Nanorods and nanocubes showed surface areas of 16.77 m2/ g and 16.55 m2/ g, respectively. The prepared ceria nanoplates, nanocubes and nanorods had crystallite size in the range of 5-25 nm and pore size range of 7-15 nm. XRD spectra confirmed that the peaks were indexed to the cubic phase of CeO2 with fluorite structure and with an average lattice parameter, 5.407 Å. Higher Ce3+ concentration and exposed surface of crystalline planes suggest that nanorods are better catalyst for CO oxidation and oxygen storage capacity (OSC).

Functionalized Nanomaterials

Functionalized Nanomaterials
Author: Muhammad Akhyar Farrukh
Publisher: BoD – Books on Demand
Total Pages: 176
Release: 2016-12-28
Genre: Science
ISBN: 9535128558

Download Functionalized Nanomaterials Book in PDF, Epub and Kindle

Generally the nanometer scale covers from 1 to 100 nm while discussing the nanomaterials. Nanomaterials have very high potency and emerge with large applications piercing through all the discipline of knowledge, leading to industrial and technological growth. Nanotechnology is a multidisciplinary science that has its roots in fields such as colloidal science, device physics, and biomedical and supramolecular chemistry. The main objective of the book is to cover maximum areas focusing on synthesis, characterization with various microscopic techniques, and multiple applications. This book is divided into two sections with Non-carbon Compounds and Carbon Compounds. The synthesis, characterization, and applications of metal, metal oxides, and metal hydroxide nanoparticles are covered in the section Non-carbon Compounds, while the section Carbon Compounds focuses on the carbon nanotubes, graphite oxide, graphene oxide, etc.

Room Temperature Synthesis and Systematic Characterization of Ultra-small Ceria Nanoparticles

Room Temperature Synthesis and Systematic Characterization of Ultra-small Ceria Nanoparticles
Author: Chetak Patel
Publisher:
Total Pages: 46
Release: 2009
Genre: Cerium oxides
ISBN:

Download Room Temperature Synthesis and Systematic Characterization of Ultra-small Ceria Nanoparticles Book in PDF, Epub and Kindle

Cerium oxide (ceria, CeO2) is a rare earth oxide that has attracted wide-spread research interest because of its unique properties such as high mechanical strength, oxygen ion conductivity, oxygen storage capacity and autocatalytic property. In recent years, researchers have discovered that ceria nanoparticles (NPs) are capable of protecting cells from free radical induced damage. Interestingly, it was found that nanometer size (~ 5 nm) ceria can scavenge free radicals quite efficiently, thus acting as an anti-oxidant. This phenomenon has been explained based on the autocatalytic property of ceria NPs. Several methods have been developed for the synthesis of ceria NPs that include flame combustion, hydroxide co-precipitation, hydrothermal/solvothermal, microemulsion, sonochemical and microwave-assisted heating methods and sol-gel method. Ceria NPs synthesized by these methods are often highly aggregated. Furthermore, large scale synthesis of monodispersed CeO2 NPs is quite challenging. Therefore it is desirable to synthesize ceria NPs in bulk quantity keeping its important properties intact, specifically free-radical scavenging property. The main goal of this study is therefore to synthesize ultra-small ([less than]5.0 nm), high quality monodispersed ceria NPs in large quantities. In this thesis work, I present a couple of room temperature techniques, dilute sodium hydroxide (NaOH) assisted and ethylenediamine (EN) assisted for the synthesis of nearly mono-dispersed, ultra-small ([less than]5 nm) and water-dispersible ceria NPs. Morphology and particle size of the ceria NPs were investigated through high resolution transmission electron microscopy (HRTEM). The HRTEM analysis confirmed the formation of 3.0 " 0.5 nm size and 2.5 " 0.2 nm size highly-crystalline ceria NPs when synthesized using dilute NaOH and EN as solvents, respectively. The nanostructures were characterized by X-ray diffraction (XRD) studies to determine the crystal structure and phase purity of the products. The samples were also thoroughly characterized by X-ray photoelectron spectroscopy (XPS) to determine the oxidation state of cerium ions. The presence of the +3 and +4 oxidation states in the samples was also confirmed from the XPS analysis. The co-existence of these two oxidation states is necessary for their applications as free radical scavenger. The autocatalytic behaviors of the ceria NPs were investigated through a hydrogen peroxide test and monitored by UV-visible transmission spectroscopy.

Cerium Oxide (CeO2): Synthesis, Properties and Applications

Cerium Oxide (CeO2): Synthesis, Properties and Applications
Author: Salvatore Scire
Publisher: Elsevier
Total Pages: 402
Release: 2019-08-21
Genre: Technology & Engineering
ISBN: 0128156627

Download Cerium Oxide (CeO2): Synthesis, Properties and Applications Book in PDF, Epub and Kindle

Cerium Oxide (CeO2): Synthesis, Properties and Applications provides an updated and comprehensive account of the research in the field of cerium oxide based materials. The book is divided into three main blocks that deal with its properties, synthesis and applications. Special attention is devoted to the growing number of applications of ceria based materials, including their usage in industrial and environmental catalysis and photocatalysis, energy production and storage, sensors, cosmetics, radioprotection, glass technology, pigments, stainless steel and toxicology. A brief historical introduction gives users background, and a final chapter addresses future perspectives and outlooks to stimulate future research. The book is intended for a wide audience, including students, academics and industrial researchers working in materials science, chemistry and physics. Addresses a wide range of applications of ceria-based materials, including catalysis, energy production and storage, sensors, cosmetics and toxicology Provides the fundamentals of ceria-based materials, including synthesis methods, materials properties, toxicology and surface chemistry Includes nanostructured ceria-based materials and a discussion of future prospects and outlooks

Advanced Nanomaterials for Catalysis and Energy

Advanced Nanomaterials for Catalysis and Energy
Author: Vladislav A. Sadykov
Publisher: Elsevier
Total Pages: 590
Release: 2018-08-27
Genre: Technology & Engineering
ISBN: 012814808X

Download Advanced Nanomaterials for Catalysis and Energy Book in PDF, Epub and Kindle

Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. Outlines synthetic and characterization methods for nanocatalysts Relates nanocatalysts' properties to their specific applications Proposes optimization methods aiming at specific applications

Positron Annihilation in Semiconductors

Positron Annihilation in Semiconductors
Author: Reinhard Krause-Rehberg
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 1999
Genre: Science
ISBN: 9783540643715

Download Positron Annihilation in Semiconductors Book in PDF, Epub and Kindle

This comprehensive book reports on recent investigations of lattice imperfections in semiconductors by means of positron annihilation. It reviews positron techniques, and describes the application of these techniques to various kinds of defects, such as vacancies, impurity vacancy complexes and dislocations.

Recent Advances in Material Sciences

Recent Advances in Material Sciences
Author: Satish Pujari
Publisher: Springer
Total Pages: 790
Release: 2019-08-06
Genre: Technology & Engineering
ISBN: 9811376433

Download Recent Advances in Material Sciences Book in PDF, Epub and Kindle

This book comprises select proceedings of the International Conference on Latest Innovations in Materials Engineering and Technology (ICLIET 2018). The book focuses on diverse engineering materials, their design and applications. The materials in discussion include those related to coatings, polymers, composites, tribology, acoustic insulators, lubricants, and cryogenics. The book also highlights emerging nano and micro materials, bio engineering materials, as well as new energy materials for solar cells and photovoltaic cells. This book will serve as an useful reference for students, researchers, and professionals working in the field of materials science and engineering.

Hydrothermal Synthesis and Characterization of Single Crystalline CeO2 Nanoparticles for Catalytic Applications

Hydrothermal Synthesis and Characterization of Single Crystalline CeO2 Nanoparticles for Catalytic Applications
Author: Taylan Meşin
Publisher:
Total Pages: 134
Release: 2012
Genre: Catalysis
ISBN:

Download Hydrothermal Synthesis and Characterization of Single Crystalline CeO2 Nanoparticles for Catalytic Applications Book in PDF, Epub and Kindle

Single crystalline cerium oxide nanoparticles were synthesized with hydrothermal method by mixing cerium nitrate[Ce(NO3)3.6H2O] aqueous solution with alkali bases CsOH and RbOH. SEM, TEM and XRD characterization methods were used in order to identify morphology. First part of the study includes the work on effect of hydrothermal parameters, such as reaction temperature, reaction time, alkali base type and concentration on particle size and morphology. It was prooved that the size of ceria nanoparticles is directly proportional with the reaction time. The reaction temperature is also an important parameter that effect the morphology of nanoparticles. At 120 oC nanoparticles form rod like structure and as time goes they start to form cubic crystals. When the alkali base and concentration was changed the results showed that higher base concentration favors the particles to form bigger structures than that of lower concentrations. In addition, optical properties of CeO2 nanoparticles were studied by using the UV-Vis and Fluorescence Spectrometry. UV-Vis Spectroscopy results show that particle size of CeO2 nanoparticles synthesized in the presence of 8M RbOH are larger than that of synthesized in presence of 8M CsOH. When the reaction time decreases the Ce3+ defect increases based on the results of Fluorescence Spectrometry results. Second part of the study includes catalytic property of CeO2 nanoparticles. Ceria nanoparticles were used as catalyst in the synthesis of flavone from 2'-hydroxychalcone. Several reaction parameters were studied in order to achieve the flavone synthesis. TLC, GC, GC-MS and NMR were used in order to monitor the results of the reactios.

Novel Synthesis and Characterization of Nanostructured Materials

Novel Synthesis and Characterization of Nanostructured Materials
Author: Annelise Kopp Alves
Publisher: Springer Science & Business Media
Total Pages: 92
Release: 2013-10-18
Genre: Technology & Engineering
ISBN: 3642412750

Download Novel Synthesis and Characterization of Nanostructured Materials Book in PDF, Epub and Kindle

Nanostructured materials have been largely studied in the last few years. They have great potential of applications in different fields such as materials science, physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. Based on results obtained by the authors' research group during the past decade, this book comes to present novel techniques to synthesize nanostructured materials and characterize their properties such as crystallinity and crystallite size, specific surface area, particle size, morphology and catalytic activity. This book is aimed for students, researchers and engineers searching for methodologies to obtain and characterize nanostructures in details.