Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications

Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications
Author: Guoqiang Ren
Publisher:
Total Pages: 190
Release: 2013
Genre: Block copolymers
ISBN:

Download Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications Book in PDF, Epub and Kindle

Organic solar cells are promising by virtue of their low-cost production, mechanical flexibility of plastics, and the range of possible applications. Although progress has been made in developing organic solar cells in the past decade, the power conversion efficiency now about 8-10% is still substantially lower than silicon-based devices. It has been recognized that the photovoltaic conversion process in organic solar cells is dependent on the morphology of the photoactive layer which consists of a binary blend of donor and acceptor materials. This work explores different approaches to controlling the morphology of bulk heterojunction polymer solar cells towards improving the photovoltaic efficiency, including diblock copolymer assemblies, organic semiconductor nanowires, and the use of processing additives. In addition, we explore a new method of characterizing the nanoscale morphology of polymer solar cells. Investigation of the photovoltaic properties, charge transport, and morphology of a series of diblock conjugated copolymers as a function of block composition showed that the highest efficiency was achieved at the 50% block composition. Nanowires assembled from diblock copolythiophenes of different compositions showed a tunable average aspect ratio (length/width) of 50-260, which revealed an increase of efficiency with increasing aspect ratio. All-nanowire solar cells comprising a polymer nanowire donor and a small-molecule nanowire acceptor were found to have enhanced photovoltaic efficiency. The use of a processing additive was found to give optimum device performance in benzobisthiazole-based donor-acceptor copolymer/fullerene and poly(3-hexylthiophene)/non-fullerene photovoltaic blend systems. The performance of non-fullerene polymer solar cells was enhanced 10-fold by using only 0.2 vol% additive and the mechanism of enhancement in efficiency was explained in terms of the optimized nanoscale morphology. Scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy was successfully used for the first time to image the nanoscale morphology of all-polymer bulk heterojunction solar cells, demonstrating high spatial resolution with chemical specificity.

Organic Solar Cells

Organic Solar Cells
Author: Wallace C.H. Choy
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2012-11-19
Genre: Technology & Engineering
ISBN: 1447148231

Download Organic Solar Cells Book in PDF, Epub and Kindle

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Electronic Excitations in Organic Based Nanostructures

Electronic Excitations in Organic Based Nanostructures
Author:
Publisher: Elsevier
Total Pages: 509
Release: 2003-11-13
Genre: Technology & Engineering
ISBN: 0080519210

Download Electronic Excitations in Organic Based Nanostructures Book in PDF, Epub and Kindle

The first book devoted to a systematic consideration of electronic excitations and electronic energy transfer in organic crystalline multilayers and organics based nanostructures(quantum wells, quantum wires, quantum dots, microcavities). The ingenious combination of organic with inorganic materials in one and the same hybrid structure is shown to give qualitatively new opto-electronic phenomena, potentially important for applications in nonlinear optics, light emitting devices, photovoltaic cells, lasers and so on. The book will be useful not only for physicists but also for chemists and biologists.To help the nonspecialist reader, three Chapters which contain a tutorial and updated introduction to the physics of electronic excitations in organic and inorganic solids have been included. * hybrid Frenkel-Wannier-Mott excitons * microcavities with crystalline and disordered organics * electronic excitation at donor-acceptor interfaces * cold photoconductivity at donor-acceptor interface * cummulative photovoltage * Feorster transfer energy in microcavity * New concepts for LEDs

Organic Electronics

Organic Electronics
Author: Franky So
Publisher: CRC Press
Total Pages: 0
Release: 2009-11-24
Genre: Technology & Engineering
ISBN: 9781420072907

Download Organic Electronics Book in PDF, Epub and Kindle

In the near future, organic semiconductors may be used in a variety of products, including flat-screen TVs, e-book readers, and third-generation organic photovoltaics applications, to name just a few. While organic electronics has received increased attention in scientific journals, those working in this burgeoning field require more in-depth coverage of the subject. Considering the rapid development in this field, Organic Electronics: Materials, Processing, Devices and Applications is a long-overdue assessment of state-of-the-art technology in organic electronics. This valuable reference harnesses the insight of various experts in the field, who contribute entire chapters on their area of specialty, covering chemistry and materials, fundamental physics, device processing, fabrication, and applications. Coverage includes cutting-edge advances in: Organic vapor phase deposition to fabricate organic nanostructures Organic semiconductor device physics Organic thin film and vertical transistors Organic photovoltaic cells OLED technologies for flat panel displays and lighting With its detailed discussion of the latest developments in the field of organic semiconductor materials and devices, this versatile book is ideally suited as a reference tool for scientists, engineers, and researchers or as an overview for those new to the field. In either capacity, its broad range of material will serve as a base for the further development of new sciences and technologies in this area.

Nanomaterials for Solar Cell Applications

Nanomaterials for Solar Cell Applications
Author: Sabu Thomas
Publisher: Elsevier
Total Pages: 760
Release: 2019-06-12
Genre: Technology & Engineering
ISBN: 0128133384

Download Nanomaterials for Solar Cell Applications Book in PDF, Epub and Kindle

Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. Provides a well-organized approach to the use of nanomaterials for solar cell applications Discusses the synthesis, characterization and applications of traditional and new material Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites

Semiconductor Nanomaterials for Flexible Technologies

Semiconductor Nanomaterials for Flexible Technologies
Author: Yugang Sun
Publisher: William Andrew
Total Pages: 320
Release: 2010-05-20
Genre: Technology & Engineering
ISBN: 1437778240

Download Semiconductor Nanomaterials for Flexible Technologies Book in PDF, Epub and Kindle

This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. Considers the physics and chemistry behind fabrication and device operation Discusses applications to electronics, optoelectronics, sensors and power systems Examines existing technologies and investigates emerging trends

Solar Cells

Solar Cells
Author: S. K. Sharma
Publisher: Springer Nature
Total Pages: 354
Release: 2020-01-07
Genre: Technology & Engineering
ISBN: 3030363546

Download Solar Cells Book in PDF, Epub and Kindle

This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.

Elementary Processes in Organic Photovoltaics

Elementary Processes in Organic Photovoltaics
Author: Karl Leo
Publisher: Springer
Total Pages: 423
Release: 2016-12-20
Genre: Technology & Engineering
ISBN: 3319283383

Download Elementary Processes in Organic Photovoltaics Book in PDF, Epub and Kindle

This volume presents the results of a multi-year research programme funded by the Deutsche Forschungsgemeinschaft (German Research Council), which explains how organic solar cells work. In this new promising photovoltaic technology, carbon-based materials are deposited by low-cost methods onto flexible substrates, thus allowing devices which open completely new applications like transparent coatings for building, solar cells integrated into clothing or packages, and many more. The investigation of organic solar cells is an interdisciplinary topic, covering physics, chemistry and engineering. The different chapters address topics ranging from the synthesis of new organic materials, to the characterization of the elementary processes such as exciton transport and separation, and the principles of highly efficient device design. /div

Nanotechnology for Photovoltaics

Nanotechnology for Photovoltaics
Author: Loucas Tsakalakos
Publisher: CRC Press
Total Pages: 458
Release: 2010-03-25
Genre: Technology & Engineering
ISBN: 1420076744

Download Nanotechnology for Photovoltaics Book in PDF, Epub and Kindle

Current concerns regarding greenhouse gas-related environmental effects, energy security, and the rising costs of fossil fuel-based energy has renewed interest in solar energy in general and photovotaics in particular. Exploring state-of-the-art developments from a practical point of view, Nanotechnology for Photovoltaics examines issues in increasing efficiency, decreasing costs, and how these two goals can be achieved in a single photovoltaic device. It provides fundamental background and places research approaches within the proper physical context as related to photovoltaics performance enhancement. The book reviews the applications of devices and their performance requirements, followed by coverage of thin films and advanced band structure concepts for obtaining efficiencies above the Shockley–Queisser single bandgap efficiency limit of ~31%. The editor and contributors also discuss the basic optical properties of nanostructured materials as related to photovoltaics applications and describes nanoscale optoelectronic device physics related to performance. They then explore recent literature in the application of various classes of nanostructures to photovoltaics. The book covers solar cells based on hybrid organic-inorganic nanocomposites structures, quantum wells, nanowires/tubes, and quantum dots. It also discusses the use of nanoparticles/quantum dots to enhance the performance of conventional solar cells and luminescent solar concentrators. Each chapter summarizes the historical development for the nanostructure class under consideration, applications beyond photovoltaics, and the major synthetic methods, followed by a critique of leading works that have employed the particular nanostructure type. The book examines the advantages of each nanostructure approach and the remaining technical challenges, with an emphasis on possible future areas of research interest. It concludes with a summary of the major processing approaches and challenges of using the various nanostructures to photovoltaics applications, focusing on future scale-up and nanomanufactuting issues. Many books cover photovoltaics and many others nanotechnology — it is the coverage of both in one resource that sets this book apart.

Solar Cells—Advances in Research and Application: 2013 Edition

Solar Cells—Advances in Research and Application: 2013 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 292
Release: 2013-06-21
Genre: Technology & Engineering
ISBN: 1481692445

Download Solar Cells—Advances in Research and Application: 2013 Edition Book in PDF, Epub and Kindle

Solar Cells—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Hybrid Solar Cells. The editors have built Solar Cells—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Hybrid Solar Cells in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Solar Cells—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.