Seismic Performance of Concrete Buildings

Seismic Performance of Concrete Buildings
Author: Liviu Crainic
Publisher: CRC Press
Total Pages: 266
Release: 2012-12-10
Genre: Technology & Engineering
ISBN: 0415631866

Download Seismic Performance of Concrete Buildings Book in PDF, Epub and Kindle

This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthquake engineering can be applied to seismic analysis and design of reinforced concrete buildings. The book starts with an up-to-date presentation of fundamental aspects of reinforced concrete behavior quantified through constitutive laws for monotonic and hysteretic loading. Basic concepts of post-elastic analysis like plastic hinge, plastic length, fiber models, and stable and unstable hysteretic behaviour are, accordingly, defined and commented upon. For a deeper understanding of seismic design philosophy and of static and dynamic post-elastic analysis, seismic behavior of different types of reinforced concrete structures (frames, walls) is examined in detail. Next, up-to-date methods for analysis and design are presented. The powerful concept of structural system is defined and systematically used to explain the response to seismic activity, as well as the procedures for analysis and detailing of common building structures. Several case studies are presented. The book is not code-oriented. The structural design codes are subject to constant reevaluation and updating. Rather than presenting code provisions, this book offers a coherent system of notions, concepts and methods, which facilitate understanding and application of any design code. The content of this book is based mainly on the authors’ personal experience which is a combination of their teaching and research activity as well as their work in the private sector as structural designers. The work will serve to help students and researchers, as well as structural designers to better understand the fundamental aspects of behavior and analysis of reinforced concrete structures and accordingly to gain knowledge that will ensure a sound design of buildings.

Recommendations for Seismic Design of Hybrid Coupled Wall Systems

Recommendations for Seismic Design of Hybrid Coupled Wall Systems
Author: Sherif El-Tawil
Publisher: Amer Society of Civil Engineers
Total Pages: 70
Release: 2010
Genre: Technology & Engineering
ISBN: 9780784410608

Download Recommendations for Seismic Design of Hybrid Coupled Wall Systems Book in PDF, Epub and Kindle

This report synthesizes the existing information on hybrid coupled wall (HCW) systems into helpful recommendations pertaining to their seismic analysis and design.

Seismic Design of Reinforced and Precast Concrete Buildings

Seismic Design of Reinforced and Precast Concrete Buildings
Author: Robert E. Englekirk
Publisher: John Wiley & Sons
Total Pages: 856
Release: 2003-03-10
Genre: Technology & Engineering
ISBN: 9780471081227

Download Seismic Design of Reinforced and Precast Concrete Buildings Book in PDF, Epub and Kindle

* Presents the basics of seismic-resistant design of concrete structures. * Provides a major focus on the seismic design of precast bracing systems.

Collapse Assessment of Reinforced Concrete Coupled Walls

Collapse Assessment of Reinforced Concrete Coupled Walls
Author: Negin Aryaee Tauberg
Publisher:
Total Pages: 273
Release: 2019
Genre:
ISBN:

Download Collapse Assessment of Reinforced Concrete Coupled Walls Book in PDF, Epub and Kindle

ABSTRACT OF THE DISSERTATION Collapse Assessment of Reinforced Concrete Ductile Coupled Walls by Negin Aryaee Tauberg Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2019 Professor John Wright Wallace, Chair Reinforced concrete coupled shear walls are efficient lateral load resisting systems commonly constructed as part of core walls in mid to high-rise buildings. Coupled walls are constructed as a result of openings accommodating doorways and windows, thus separating a solid wall segment in two piers. Instead of summing the strength of two individual wall piers, the efficiency of the individual wall piers is improved by proper coupling of two adjacent walls linked by coupling beams. During earthquake shaking, coupling beams act as ductile fuses and dissipate seismic energy over the building height. This coupling action reduces the flexural demand at the base of the shear walls and results in increased strength, stiffness, and lateral load resistance. Coupling beams can dissipate energy well in the system and retain significant strength and stiffness through large displacement reversals when they are detailed to retain ductility with adequate longitudinal, diagonal, and confinement reinforcement. As part of this study, important parameters affecting the behavior of coupling beams and coupled wall systems are assessed. A thorough coupling beam database is compiled consisting of 104 individual beam specimen and 11 coupled wall system level tests. The database is used to derive trends for coupling beam effective stiffness and shear-deformation backbone relations. Based on a review of past experimental results, an expression is derived relating the coupling beam effective stiffness as a function of the beam aspect ratio, i.e., EcIeff/EcIg = 0.07ln/h, which represents the secant stiffness to yield and includes the stiffening impact of the slab and the post- tensioning stress. This expression has been adopted in the PEER TBI (2017) and LATBSDC (2017) guidelines. Experimental shear-deformation information from the database is also used to quantify plastic rotations at peak coupling beam shear strength and at strength loss. The subsequent part of this study focuses on proposing appropriate seismic response parameters for coupled wall systems. Current ASCE 7-16 and ACI 318-14 design provisions specify the same seismic response parameters to be used for coupled walls as are for special structural walls. However, well-designed coupled walls can have improved lateral performance and energy dissipation compared to uncoupled walls since part of the total overturning moment is resisted by coupling action and energy dissipation is distributed along the height of structure. In coordination with ASCE 7 and ACI 318, a new lateral system is introduced for Reinforced Concrete (RC) Ductile Coupled Walls as an assembly of walls with aspect ratio (hwcs/lw) greater than 2.0 which are linked by coupling beams having aspect ratios (ln/h) between 2.0 and 5.0. This study employs the FEMA P695 methodology to validate the proposed response modification factor of R = 8, deflection amplification factor of Cd = 8, and an overstrength factor of 0 = 2.5 for RC Ductile Coupled Walls. The collapse assessment studies include forty-one Archetypes designed using ASCE 7-16 and ACI 318-19 including new provisions that require wall shear amplification and a drift capacity check. The Archetypes vary in building height (6 to 30 stories), wall cross section (planar and flanged/core), coupling beam aspect ratio (ln/h = 2.0 to 5.0), and coupling beam reinforcement arrangement (conventionally reinforced and diagonally reinforced). Collapse of the Archetypes is evaluated using failure criteria models that account for flexural failure (concrete crushing, bar buckling, wall lateral instability, bar fracture), shear, and axial failures. In comparison to previous studies that have assumed failure to occur at a roof drift ratio of 5%, this study uses a conservative approach to define flexural failure as a 20% drop in lateral strength. Overall, nonlinear static pushover and incremental dynamic analysis results indicate that R = 8 and 0 = 2.5 are appropriate parameters for RC Ductile Coupled Wall systems that are designed per ASCE 7-16 and ACI 318-19 provisions.

Seismic Performance of Reinforced Concrete Coupled Walls

Seismic Performance of Reinforced Concrete Coupled Walls
Author: Richard Clive Malcolm
Publisher:
Total Pages:
Release: 2015
Genre: Buildings
ISBN:

Download Seismic Performance of Reinforced Concrete Coupled Walls Book in PDF, Epub and Kindle

Following the 2010/2011 Canterbury Earthquakes, an investigation by the Canterbury Earthquakes Royal Commission (CERC) considered the performance of a range of buildings in Christchurch. Several of the buildings investigated by the CERC included reinforced concrete coupled walls, which are comprised of two wall piers linked (or coupled) by a series of coupling beams at each floor level. Notably the coupled wall buildings investigated by the CERC were observed to have performed undesirably when compared to their design intent. It was found by the CERC that these coupled walls tended to display higher strengths and lower ductility capacity than was intended in design. The postulated reason for this behaviour was that interaction between structural components strengthened the coupling beams by restraining the tendency of the coupling beams to axially elongate. To better account for this interaction in design practice, it was recommended by the CERC that the behaviour of coupled walls be investigated further. In this study, structural interaction between coupling beams and floors was first considered using finite element software VecTor2. It was found that the floors tended to restrain the elongation of coupling beams and to cause large coupling beam strength increases. The extent of floor that was activated to restrain coupling beam elongation being found to be dependent upon the arrangement of the floor. Existing provisions of NZS 3101:2006 for upper bounds on floor effective widths were found to be valid for assessment of the maximum coupling beam strength amplification caused by floor interaction. Analysis of a series of seismically loaded coupled walls interacting with floors was undertaken using VecTor2 software. In agreement with the findings of the CERC, axial restraint of coupling beams was found to have a large impact on coupled wall performance. Coupling beam strengths were measured up to 300% of their design strength, which tended to change the strength hierarchy of the coupled wall. In particular it was found that many existing coupled walls would have behaved similarly to a single cantilever wall with penetrations because the coupling beams were too strong to yield. These coupled walls tended to display lower energy dissipation and higher wall pier damage than assumed in design. The coupled wall provisions proposed (at the time of writing) in the 2014/2015 NZS 3101:2006 Amendment were found to over-estimate the impact of the floor systems on restraining coupling beam elongation. However these provisions did not include the effect of the wall piers restraining coupling beam elongation, so overall coupled wall overstrength capacities tended to be under-predicted. As an approximate method of accounting for axial restraint in design of coupled walls, it was recommended that redistribution of design demands be used to reduce the coupling beam design capacity and to achieve a more desirable coupled wall behaviour.

Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings

Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings
Author: Federal Emergency Agency
Publisher: FEMA
Total Pages: 274
Release: 2013-04-02
Genre:
ISBN:

Download Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings Book in PDF, Epub and Kindle

Following the two damaging California earthquakes in 1989 (Loma Prieta) and 1994 (Northridge), many concrete wall and masonry wall buildings were repaired using federal disaster assistance funding. The repairs were based on inconsistent criteria, giving rise to controversy regarding criteria for the repair of cracked concrete and masonry wall buildings. To help resolve this controversy, the Federal Emergency Management Agency (FEMA) initiated a project on evaluation and repair of earthquake damaged concrete and masonry wall buildings in 1996. The ATC-43 project addresses the investigation and evaluation of earthquake damage and discusses policy issues related to the repair and upgrade of earthquake damaged buildings. The project deals with buildings whose primary lateral-force-resisting systems consist of concrete or masonry bearing walls with flexible or rigid diaphragms, or whose vertical-load-bearing systems consist of concrete or steel frames with concrete or masonry infill panels. The intended audience is design engineers, building owners, building regulatory officials, and government agencies. The project results are reported in three documents. The FEMA 306 report, Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Basic Procedures Manual, provides guidance on evaluating damage and analyzing future performance. Included in the document are component damage classification guides, and test and inspection guides. FEMA 307, Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Technical Resources, contains supplemental information including results from a theoretical analysis of the effects of prior damage on single-degree-of-freedom mathematical models, additional background information on the component guides, and an example of the application of the basic procedures. FEMA 308, The Repair of Earthquake Damaged Concrete and Masonry Wall Buildings, discusses the policy issues pertaining to the repair of earthquake damaged buildings and illustrates how the procedures developed for the project can be used to provide a technically sound basis for policy decisions. It also provides guidance for the repair of damaged components.

Proceedings of SECON’21

Proceedings of SECON’21
Author: Giuseppe Carlo Marano
Publisher: Springer Nature
Total Pages: 1127
Release: 2021-09-03
Genre: Technology & Engineering
ISBN: 3030803120

Download Proceedings of SECON’21 Book in PDF, Epub and Kindle

This book gathers peer-reviewed contributions presented at the International Conference on Structural Engineering and Construction Management (SECON’21), held on 12-15 May 2021. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.

Seismic Design of RC Buildings

Seismic Design of RC Buildings
Author: Sharad Manohar
Publisher: Springer
Total Pages: 465
Release: 2015-09-09
Genre: Science
ISBN: 8132223195

Download Seismic Design of RC Buildings Book in PDF, Epub and Kindle

This book is intended to serve as a textbook for engineering courses on earthquake resistant design. The book covers important attributes for seismic design such as material properties, damping, ductility, stiffness and strength. The subject coverage commences with simple concepts and proceeds right up to nonlinear analysis and push-over method for checking building adequacy. The book also provides an insight into the design of base isolators highlighting their merits and demerits. Apart from the theoretical approach to design of multi-storey buildings, the book highlights the care required in practical design and construction of various building components. It covers modal analysis in depth including the important missing mass method of analysis and tension shift in shear walls and beams. These have important bearing on reinforcement detailing. Detailed design and construction features are covered for earthquake resistant design of reinforced concrete as well as confined and reinforced masonry structures. The book also provides the methodology for assessment of seismic forces on basement walls and pile foundations. It provides a practical approach to design and detailing of soft storeys, short columns, vulnerable staircases and many other components. The book bridges the gap between design and construction. Plenty of worked illustrative examples are provided to aid learning. This book will be of value to upper undergraduate and graduate students taking courses on seismic design of structures.