Scaling Issues and Design of MEMS

Scaling Issues and Design of MEMS
Author: Salvatore Baglio
Publisher: John Wiley & Sons
Total Pages: 244
Release: 2008-07-31
Genre: Technology & Engineering
ISBN: 9780470034088

Download Scaling Issues and Design of MEMS Book in PDF, Epub and Kindle

This accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) thermocouple; mechanical sensors; inductive microsensors for the detection of magnetic particles; electrostatic, thermal and magnetic actuators. With an original approach, this informative text encompasses the entire range of themes currently at the forefront of MEMS, including an analysis of the importantissue of energy sources in MEMS. In addition, the book explores contemporary research into the design of complete MEMS with a case study on colonies of microbots. Scaling Issues and Design of MEMS aims to improve the reader’s basic knowledge on modelling issues of complex micro devices, and to encourage new thinking about scaling effects. It will provide support for practising engineers working within the defence industry and will also be of welcome interest to graduate students and researchers with a background in electronic engineering, physics, chemistry, biology and materials science.

MEMS Accelerometers

MEMS Accelerometers
Author: Mahmoud Rasras
Publisher: MDPI
Total Pages: 252
Release: 2019-05-27
Genre: Technology & Engineering
ISBN: 3038974145

Download MEMS Accelerometers Book in PDF, Epub and Kindle

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

MEMS and Microsystems

MEMS and Microsystems
Author: Tai-Ran Hsu
Publisher: John Wiley & Sons
Total Pages: 576
Release: 2020-07-16
Genre: Technology & Engineering
ISBN: 1119771161

Download MEMS and Microsystems Book in PDF, Epub and Kindle

Technology/Engineering/Mechanical A bestselling MEMS text...now better than ever. An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology. In the five years since the publication of the first edition, there have been significant changes in the science and technology of miniaturization, including microsystems technology and nanotechnology. In response to the increasing needs of engineers to acquire basic knowledge and experience in these areas, this popular text has been carefully updated, including an entirely new section on the introduction of nanoscale engineering. Following a brief introduction to the history and evolution of nanotechnology, the author covers the fundamentals in the engineering design of nanostructures, including fabrication techniques for producing nanoproducts, engineering design principles in molecular dynamics, and fluid flows and heat transmission in nanoscale substances. Other highlights of the Second Edition include: * Expanded coverage of microfabrication plus assembly and packaging technologies * The introduction of microgyroscopes, miniature microphones, and heat pipes * Design methodologies for thermally actuated multilayered device components * The use of popular SU-8 polymer material Supported by numerous examples, case studies, and applied problems to facilitate understanding and real-world application, the Second Edition will be of significant value for both professionals and senior-level mechanical or electrical engineering students.

MEMS and Microsystems

MEMS and Microsystems
Author: Tai-Ran Hsu
Publisher: McGraw-Hill Science, Engineering & Mathematics
Total Pages: 456
Release: 2002
Genre: Computers
ISBN:

Download MEMS and Microsystems Book in PDF, Epub and Kindle

Microsystems and MEMS technology is one of the biggest breakthroughs in the area of mechanical and electronic technology in recent years. This is the technology of extremely small and powerful devices, and systems built around them, which have mechanical and electrical components. MEMS technology is expanding rapidly, with major application areas being telecommunications, biomedical technology, manufacturing and robotic systems, transportation and aerospace. Academics are desperate for texts to familiarise future engineers with this broad-ranging technology. This text provides an engineering design approach to MEMS and microsystems which is appropriate for professionals and senior level students. This design approach is conveyed through good examples, cases and applied problems. The book is appropriate for mechanical and aerospace engineers, since it carefully explains the electrical/electronic aspects of the subject. Electrical engineering students will be given strong coverage of the mechanical side of MEMS, something they may not receive elsewhere.

Micro Electro Mechanical System Design

Micro Electro Mechanical System Design
Author: James J. Allen
Publisher: CRC Press
Total Pages: 492
Release: 2005-07-08
Genre: Technology & Engineering
ISBN: 1420027751

Download Micro Electro Mechanical System Design Book in PDF, Epub and Kindle

It is challenging at best to find a resource that provides the breadth of information necessary to develop a successful micro electro mechanical system (MEMS) design. Micro Electro Mechanical System Design is that resource. It is a comprehensive, single-source guide that explains the design process by illustrating the full range of issues involved,

MEMS Accelerometers

MEMS Accelerometers
Author: Ibrahim (Abe) M. Elfadel
Publisher:
Total Pages: 1
Release: 2019
Genre: Electronic books
ISBN: 9783038974154

Download MEMS Accelerometers Book in PDF, Epub and Kindle

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

Analysis and Design Principles of MEMS Devices

Analysis and Design Principles of MEMS Devices
Author: Minhang Bao
Publisher: Elsevier
Total Pages: 327
Release: 2005-04-12
Genre: Technology & Engineering
ISBN: 008045562X

Download Analysis and Design Principles of MEMS Devices Book in PDF, Epub and Kindle

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field. * Presents the analysis and design principles of MEMS devices more systematically than ever before. * Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures * A problem section is included at the end of each chapter with answers provided at the end of the book.

Mems for Biomedical Applications

Mems for Biomedical Applications
Author: Shekhar Bhansali
Publisher: Elsevier
Total Pages: 511
Release: 2012-07-18
Genre: Technology & Engineering
ISBN: 0857096273

Download Mems for Biomedical Applications Book in PDF, Epub and Kindle

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Microelectromechanical Systems

Microelectromechanical Systems
Author: Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems
Publisher: National Academies Press
Total Pages: 76
Release: 1997-12-15
Genre: Technology & Engineering
ISBN: 0309591511

Download Microelectromechanical Systems Book in PDF, Epub and Kindle

Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rival--perhaps surpass--the societal impact of integrated circuits.

Principles of Microelectromechanical Systems

Principles of Microelectromechanical Systems
Author: Ki Bang Lee
Publisher: John Wiley & Sons
Total Pages: 552
Release: 2011-03-21
Genre: Technology & Engineering
ISBN: 111810224X

Download Principles of Microelectromechanical Systems Book in PDF, Epub and Kindle

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.