Numerical Simulation of Submicron Semiconductor Devices

Numerical Simulation of Submicron Semiconductor Devices
Author: Kazutaka Tomizawa
Publisher: Artech House on Demand
Total Pages: 341
Release: 1993-01-01
Genre: Mathematics
ISBN: 9780890066201

Download Numerical Simulation of Submicron Semiconductor Devices Book in PDF, Epub and Kindle

Describes the basic theory of carrier transport, develops numerical algorithms used for transport problems or device simulations, and presents real-world examples of implementation.

Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: World Scientific
Total Pages: 242
Release: 1998
Genre: Science
ISBN: 9789810236939

Download Introduction to Semiconductor Device Modelling Book in PDF, Epub and Kindle

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.

The Physics of Submicron Semiconductor Devices

The Physics of Submicron Semiconductor Devices
Author: Harold L. Grubin
Publisher: Springer Science & Business Media
Total Pages: 729
Release: 2013-11-11
Genre: Technology & Engineering
ISBN: 1489923829

Download The Physics of Submicron Semiconductor Devices Book in PDF, Epub and Kindle

The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.

Modelling of Interface Carrier Transport for Device Simulation

Modelling of Interface Carrier Transport for Device Simulation
Author: Dietmar Schroeder
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3709166446

Download Modelling of Interface Carrier Transport for Device Simulation Book in PDF, Epub and Kindle

This book contains a comprehensive review of the physics, modelling and simulation of electron transport at interfaces in semiconductor devices. It combines a review of existing interface charge transport models with original developments, and introduces a unified representation of charge transport at semiconductor interfaces.

Physics of Submicron Devices

Physics of Submicron Devices
Author: David K. Ferry
Publisher: Springer Science & Business Media
Total Pages: 409
Release: 2012-12-06
Genre: Science
ISBN: 1461532841

Download Physics of Submicron Devices Book in PDF, Epub and Kindle

The purposes of this book are many. First, we must point out that it is not a device book, as a proper treatment of the range of important devices would require a much larger volume even without treating the important physics for submicron devices. Rather, the book is written principally to pull together and present in a single place, and in a (hopefully) uniform treatment, much of the understanding on relevant physics for submicron devices. Indeed, the understand ing that we are trying to convey through this work has existed in the literature for quite some time, but has not been brought to the full attention of those whose business is the making of submicron devices. It should be remarked that much of the important physics that is discussed here may not be found readily in devices at the 1.0-JLm level, but will be found to be dominant at the O.I-JLm level. The range between these two is rapidly being covered as technology moves from the 256K RAM to the 16M RAM chips.

The Physics of Submicron Structures

The Physics of Submicron Structures
Author: Harold L. Grubin
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2012-12-06
Genre: Science
ISBN: 1461327776

Download The Physics of Submicron Structures Book in PDF, Epub and Kindle

Research on electronic transport in ultra small dimensions has been highly stimulated by the sensational developments in silicon technology and very large scale integration. The papers in this volume, however, have been influenced to no lesser extent by the advent of molecular beam epitaxy and metal/organic chemical vapor deposition which has made possible the control of semiconductor boundaries on a quantum level. This new control of boundary condi tions in ultra small electronic research is the mathematical reason for a whole set of innovative ideas. For the first time in the history of semiconductors, it is possible to design device functions from physical considerations involving ~ngstom scale dimensions. At the time the meeting was held, July 1982, it was one of the first strong signals of the powerful developments in this area. During the meeting, important questions have been answered concerning ballistic transport, Monte Carlo simulations of high field transport and other developments pertinent to new device concepts and the understanding of small devices from physics to function. The committee members want to express their deep appreciation to the speakers who have made the meeting a success. The USER pro ject of DOD has been a vital stimulous and thanks go to the Army Research Office and the Office of Naval Research for financial sup port. Urbana, January 1984 K. Hess, Conference Chairman J. R. Brews L. R. Cooper, Ex Officio D. K. Ferry H. L. Grubin G. J. Iafrate M. I. Nathan A. F.

Hot Carriers in Semiconductor Nanostructures

Hot Carriers in Semiconductor Nanostructures
Author: Jagdeep Shah
Publisher: Elsevier
Total Pages: 525
Release: 2012-12-02
Genre: Science
ISBN: 0080925707

Download Hot Carriers in Semiconductor Nanostructures Book in PDF, Epub and Kindle

Nonequilibrium hot charge carriers play a crucial role in the physics and technology of semiconductor nanostructure devices. This book, one of the first on the topic, discusses fundamental aspects of hot carriers in quasi-two-dimensional systems and the impact of these carriers on semiconductor devices. The work will provide scientists and device engineers with an authoritative review of the most exciting recent developments in this rapidly moving field. It should be read by all those who wish to learn the fundamentals of contemporary ultra-small, ultra-fast semiconductor devices. Topics covered include Reduced dimensionality and quantum wells Carrier-phonon interactions and hot phonons Femtosecond optical studies of hot carrier Ballistic transport Submicron and resonant tunneling devices

Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices

Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices
Author: Edwin Chihchuan Kan
Publisher:
Total Pages: 210
Release: 1992
Genre:
ISBN:

Download Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices Book in PDF, Epub and Kindle

Numerical modeling of nonstationary transport effects using partial differential equations derived from the Boltzmann Transport Equation (BTE) is investigated. Augmented drift-diffusion (ADD) models and improved energy transport (ET) models for submicron device simulation are constructed and numerically implemented. Analytical derivation of the length coefficient for the ADD models is presented for both single- and multi-valley approximations. Results of typical $nsp+ - n - nsp+$ ballistic diodes for Si and GaAs are presented. The extension of the ADD model to two dimensions is then formulated, and the implementation problems with the standard box integration method, as used in conventional drift-diffusion (DD) models, are examined. Improved ET models are derived from the zeroth and second moments of the Boltzmann transport equation and from the presumed function form of the even part of the distribution function. Energy band nonparabolicity and non-Maxwellian distribution effects are included to first order. The ET models are amenable to an efficient self-consistent discretization, with standard techniques, taking advantage of the similarity between current and energy flow equations. Numerical results for ballistic diodes and MOSFETs are presented. Typical spurious velocity overshoot spikes, obtained in conventional hydrodynamics simulations of ballistic diodes, are virtually eliminated. By comparing the formulation of the ET and HD models, we find that the spurious spike is caused by the momentum relaxation time approximation and the resulting form of the thermal diffusion terms. Calculations based on a two-carrier-population model, at the anode junction, further confirm our analysis of the spurious spike.