Optical Interactions in Solids

Optical Interactions in Solids
Author: Baldassare Di Bartolo
Publisher:
Total Pages: 0
Release: 2010
Genre: Solids
ISBN: 9789814295758

Download Optical Interactions in Solids Book in PDF, Epub and Kindle

Optical Properties of Solids

Optical Properties of Solids
Author: Frederick Wooten
Publisher: Academic Press
Total Pages: 273
Release: 2013-10-22
Genre: Science
ISBN: 1483220761

Download Optical Properties of Solids Book in PDF, Epub and Kindle

Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.

Optical Properties of Solids

Optical Properties of Solids
Author: Mark Fox
Publisher: Oxford University Press
Total Pages: 415
Release: 2010-03-26
Genre: Science
ISBN: 0191576727

Download Optical Properties of Solids Book in PDF, Epub and Kindle

The second edition of this successful textbook provides an up-to-date account of the optical physics of solid state materials. The basic principles of absorption, reflection, luminescence, and light scattering are covered for a wide range of materials, including insulators, semiconductors and metals. The text starts with a review of classical optics, and then moves on to the treatment of optical transition rates by quantum theory. In addition to the traditional discussion of crystalline materials, glasses and molecular solids are also covered. The first edition included a number of subjects that are not normally covered in standard texts, notably semiconductor quantum wells, molecular materials, vibronic solid state lasers, and nonlinear optics. The basic structure of the second edition is unchanged, but all of the chapters have been updated and improved. Futhermore, a number of important new topics have been added, including: · Optical control of spin · Quantum dots · Plasmonics · Negative refraction · Carbon nanostructures (graphene, nanotubes and fullerenes) · NV centres in diamond The text is aimed at final year undergraduates, masters students and researchers. It is mainly written for physicists, but might also be useful for electrical engineers, materials scientists and physical chemists. The topics are written in a clear tutorial style with worked examples, chapter summaries and exercises. A solutions manual is available on request for instructors.

Electronic Structure and Magneto-Optical Properties of Solids

Electronic Structure and Magneto-Optical Properties of Solids
Author: Victor Antonov
Publisher: Springer Science & Business Media
Total Pages: 538
Release: 2006-05-05
Genre: Science
ISBN: 1402019068

Download Electronic Structure and Magneto-Optical Properties of Solids Book in PDF, Epub and Kindle

The aim of this book is to review recent achievements in thetheoretical investigations of the electronic structure, optical, magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)properties of compounds and Multilayered structures.Chapter 1 of this book is of an introductory character and presentsthe theoretical foundations of the band theory of solids such as thedensity functional theory for ground state properties of solidsincluding local density approximation (LDA). It also presents somemodifications to the LDA, such as gradient correction, self-interaction correction, LDA+U method, orbital polarizationcorrection, GW approximation, and dynamical mean- field theory. Thedescription of the magneto-optical effects and linear response theoryare also presented.The book describes the MO properties for a number of 3d materials, such as elemental ferromagnetic metals (Fe, Co and Ni) andparamagnetic metals in external magnetic fields (Pd and Pt), someimportant 3d compounds such as XPt3 (X=V, Cr, Mn, Fe and Co), Heusleralloys, chromium spinel chalcogenides, MnB and strongly correlatedmagnetite Fe304. It also describes the recent achievements in both theexperimental and theoretical investigations of the electronicstructure, optical and MO properties of transition metal multilayeredstructures (MLS).The book presents also the MO properties of f band ferromagneticmaterials: Tm, Nd, Sm, Ce and La monochalcogenides, some important Y

Electrodynamics of Solids

Electrodynamics of Solids
Author: Martin Dressel
Publisher: Cambridge University Press
Total Pages: 490
Release: 2002-01-17
Genre: Science
ISBN: 9780521597265

Download Electrodynamics of Solids Book in PDF, Epub and Kindle

The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.

Optical Processes in Solids

Optical Processes in Solids
Author: Yutaka Toyozawa
Publisher: Cambridge University Press
Total Pages: 432
Release: 2003-01-09
Genre: Science
ISBN: 9780521554473

Download Optical Processes in Solids Book in PDF, Epub and Kindle

A unifying element that links the apparently diverse phenomena observed in optical processes is the dielectric dispersion of matter. It describes the response of matter to incoming electromagnetic waves and charged particles, and thus predicts their behavior in the self-induced field of matter, known as polariton and polaron effects. The energies of phonon, exciton and plasmon, quanta of collective motions of charged particles constituting the matter, are also governed by dielectric dispersion. Since the latter is a functional of the former, one can derive useful relations for their self-consistency. Nonlinear response to laser light inclusive of multiphoton processes, and excitation of atomic inner shells by synchrotron radiation, are also described. Within the configuration coordinate model, photo-induced lattice relaxation and chemical reaction are described equally to both ground and relaxed excited states, to provide a novel and global perspective on structural phase transitions and the nature of interatomic bonds. This book was first published in 2003.

Optical Properties of Excited States in Solids

Optical Properties of Excited States in Solids
Author: Baldassare di Bartolo
Publisher: Springer Science & Business Media
Total Pages: 749
Release: 2012-12-06
Genre: Science
ISBN: 146153044X

Download Optical Properties of Excited States in Solids Book in PDF, Epub and Kindle

This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.

Optical Properties of Solids

Optical Properties of Solids
Author: S. Mitra
Publisher: Springer
Total Pages: 639
Release: 2013-04-17
Genre: Science
ISBN: 1475711239

Download Optical Properties of Solids Book in PDF, Epub and Kindle

This book is an account of the manner in which the optical phenomena observed from solids relate to their fundamental properties. Written at the graduate level, it attempts a threefold purpose: an indication of the breadth of the subject, an in-depth examination of important areas, and a text for a two-semester course. The first two chapters present introductory theory as a foundation for subsequent reading. The following ten chapters broadly concern electronic properties associated with semiconductors ranging from narrow to wide energy gap materials. Lattice properties are examined in the remaining chap ters, in which effects governed by phonons in perfect crystals, point defects, their vibrational and electronic spectra, and electron-phonon interactions are stressed. Fun and hard work, both in considerable measure, have gone into the preparation of this volume. At the University of Freiburg, W. Germany, from August 7-20, 1966, the occasion of a NATO Advanced Study Institute on "The Optical Properties of Solids," the authors of these various chapters lectured for the Institute; this volume provides essentially the "Proceed ings" of that meeting. Many major revisions of original lectures (contrac tions and enlargements) were required for better organization and presentation of the subject matter. Several abbreviated chapters appear mainly to indicate the importance of their contents in optical properties research and to indicate recently published books that provide ample coverage. We are indebted to many people: the authors for their efforts and patience; our host at the University of Freiburg, the late Professor Dr.