Multifunctional Medical Devices Based on PH-sensitive Hydrogels for Controlled Drug Delivery

Multifunctional Medical Devices Based on PH-sensitive Hydrogels for Controlled Drug Delivery
Author: Hongyan He
Publisher:
Total Pages: 198
Release: 2006
Genre: Colloids
ISBN:

Download Multifunctional Medical Devices Based on PH-sensitive Hydrogels for Controlled Drug Delivery Book in PDF, Epub and Kindle

Abstract: Hydrogels are a desired material for biomedical and pharmaceutical applications due to their unique swelling properties and highly hydrated structure. To better control the synthesized hydrogels for various applications, it is necessary to have a thorough understanding of hydrogel structure and reaction mechanism. In this study, pH-sensitive hydrogel networks consisting of methacrylic acid (MAA) crosslinked with tri(ethylene glycol) dimethacrylate (TEGDMA) were synthesized by free-radical photopolymerization in the water/ethanol mixture with different ratios under various light intensity. Reaction rate was measured using Photo-Differential Scanning Calorimetry (PhotoDSC) with a modified sample pan designed for handling volatile reagents. A photo-rheometer and a dynamic light scattering (DLS) goniometer were used to follow the changes in viscosity and molecule size of the resin system during photopolymerization. By using the desired functional hydrogels, several drug delivery systems were developed based on the selected integration of a number of micro-manufacturing modules such as soft-lithography, micro-imprinting, and polymer self-folding, to achieve multi-functionalities such as drug protection, self-regulated oscillatory release, enhanced mucoadhesion, and targeted unidirectional release. To evaluate the device performance, adhesion measurement, dynamic flow testing, and targeted unidirectional release were conducted for trans-luminal delivery of two model drugs, acid orange 8 and bovine serum albumin. The self-folding device first attached to the mucosal surface and then curled into the mucus, leading to enhanced mucoadhesion in the mode of "grabbing". Furthermore, the folded layer served as a diffusion barrier, minimizing the drug leakage in the small intestine. The resulting unidirectional release provides improved drug transport through the mucosal epithelium due to localized high drug concentration. The functionalities of the devices have been successfully demonstrated in vitro using a porcine small intestine. The novel delivery devices will be of great benefit to the advancement of oral administration of proteins and DNAs. Since the mucus layer covers many tissues at other specific sites, the devices may be applied for ocular, buccal, vaginal and rectal administrations. The polymer self-folding at the microscale can also be applied as probe arrays for bio/chemical sensing, carriers in cell-based bioreactors, and tissue clamping.

Intelligent Hydrogels in Diagnostics and Therapeutics

Intelligent Hydrogels in Diagnostics and Therapeutics
Author: Anujit Ghosal
Publisher: CRC Press
Total Pages: 164
Release: 2020-05-27
Genre: Technology & Engineering
ISBN: 1000056147

Download Intelligent Hydrogels in Diagnostics and Therapeutics Book in PDF, Epub and Kindle

This book explores the potential of hydrogels as a multiutility system and their benefits (biocompatibility, degradability, and supporting scaffolds) for a wide range of applications in diagnostics and therapeutics. It also discusses the future prospects and challenges facing hydrogels. A wide variety of smart hydrogels (conducting, stimuli responsive, and others) with possible biomedical applications are elaborated. The book demonstrates the effectiveness of hydrogels in diagnostics of diseases in various in vivo and in vitro environments and highlights the engineering/functionalization of hydrogels for everyday drug dosage as an efficient drug carrier, scaffold, and sensing application. Explores the potential of hydrogels as a multifunctional system and their benefits, particularly for biomedical applications in diagnostics as well as therapeutics. Highlights the designing and engineering of hydrogels for everyday drug dosage and possible functionalization to fabricate an efficient drug carrier. Examines the significance of biopolymer-based hydrogels and their responsiveness in different physiological fluids. Demonstrates the effectiveness of hydrogels in diagnostics of diseases in various in,vivo and in,vitro environments. Presents challenges associated with the hydrogels and discusses possible in-hand modifications at length. Dr. Anujit Ghosal worked in the School of Biotechnology, Jawaharlal Nehru University, India. Currently, he is affiliated with the School of Life Sciences, Beijing Institute of Technology, Beijing, PRC. Dr. Ghosal researches in biochemistry, polymer chemistry, and nanotechnology. He has been the recipient of prestigious fellowships throughout his research career. His research ability is proven by his published peer-reviewed research and review articles and contributed book chapters. Dr. Ajeet Kaushik works as an assistant professor of chemistry and is exploring advanced electrochemical sensing systems and nanomedicine for personalized health wellness at the Department of Natural Sciences of the Division of Science, Arts, and Mathematics at Florida Polytechnic University, Lakeland, US. He is the recipient of various reputed awards for his service in the area of nanobiotechnology for health care. His excellent research credentials are reflected by his four edited books, 100 international research peer-reviewed publications, and three patents in the area of nanomedicine and smart biosensors for personalized health care.

Stimuli-responsive and Self-healing Nanocomposite Hydrogels Based on Reversible and Dynamic Crosslinks

Stimuli-responsive and Self-healing Nanocomposite Hydrogels Based on Reversible and Dynamic Crosslinks
Author: Meng Wu
Publisher:
Total Pages: 0
Release: 2022
Genre: Colloids
ISBN:

Download Stimuli-responsive and Self-healing Nanocomposite Hydrogels Based on Reversible and Dynamic Crosslinks Book in PDF, Epub and Kindle

Hydrogels, due to their soft and water abundant natures, highly resemble human skins and tissues and thereby have attracted extensive attention in recent years. Functional hydrogels showing responsiveness to various stimuli such as pH, temperature, strain and pressure are promising for a wide range of biomedical and electrical applications. However, traditional hydrogels crosslinked via permanent covalent bonds are generally weak, brittle and lack of functionalities. Incorporation of reversible and dynamic crosslinks into hydrogel networks can effectively improve their mechanical performances, introduce multiple responsiveness, and endow the hydrogels with self-healing capability. On the other hand, introduction of stiff nanomaterials into hydrogel matrix is an effective approach towards strong and functional gel materials. The combination of the nanofillers and appropriate interfacial reversible and dynamic interactions provides a promising method for the fabrication of high-performance multifunctional hydrogels to meet the increasing needs of modern materials. In this thesis, a review on hydrogels based on reversible and dynamic crosslinks, stimuli-responsive and self-healing functions, and nanocomposite hydrogels was presented first followed by three original research projects on developing nanocomposite hydrogels with stimuli sensitivity and self-healing property based on reversible interactions for biomedical and electrical applications. Injectable, self-healing and pH-responsive hydrogels are great intelligent drug delivery vehicles for controlled and localized therapeutic release. Hydrogels that show pH-sensitive behaviors in mildly acidic range are ideal to be used for the treatment of regions showing local acidosis like tumors, wounds and infections. In the first project, we present a facile preparation of an injectable, self-healing and super-sensitive pH-responsive nanocomposite hydrogel based on Schiff base reactions between aldehyde-functionalized polymers and amine-modified silica nanoparticles. The hydrogel shows fast gelation, injectability and rapid self-healing capability. Moreover, the hydrogel demonstrates excellent stability under neutral physiological conditions while a sharp gel-sol transition induced by faintly acidic environment. The pH-responsiveness of the hydrogel is ultra-sensitive, where the mechanical properties, hydrolytic degradation and drug release behaviors can alter significantly when subjected to a slight pH change of 0.2. The novel injectable, self-healing and sensitive pH-responsive hydrogel serves as a promising candidate as localized drug carriers with controlled delivery capability triggered by acidosis, holding great promise for cancer therapy, wound healing and infection treatment. Conductive hydrogels are of great significance for soft electronic devices. In the second project, we have developed a novel hydrogel ionic conductor by integrating nanofiller reinforcement with micelle cross-linking. The hydrogel was facilely prepared via one-pot polymerization of acrylamide and an amino-functionalized monomer in the presence of carbon nanotubes, aldehyde-modified F127 and LiCl. The dynamic chemical and physical interactions of the cross-linked network offers the hydrogel with a wide spectrum of properties, including excellent stretchability, toughness, exceptional elasticity, resistance to damage by sharp materials, self-healing property and high conductivity. In addition, the hydrogel demonstrated cooling-induced whitening optical behavior. When exploited as a strain and pressure sensor to monitor diverse human motions, the prepared hydrogel sensor showed excellent sensitivity and reliability. The hydrogel was further integrated with an eye mask to monitor human sleep and showed high reliability for the detection of rapid eye movement (REM) sleep. This work provides new insights into the fabrication of multifunctional, smart and conductive materials, holding great promise for a broad range of applications like wearable sensors, artificial skins, and soft robotics. In the third project, we have developed an ionic conductive nanocomposite hydrogel with ultra-stretchability and intelligent sensing functions. By leveraging the dynamic feature of multiple intermolecular interactions, polymer/carbon nanotube networks with excellent mechanical performances (i.e., tensile strength, stretchability and toughness up to 1.09 MPa, 4075% and 12.8 MJ/m3, respectively) were achieved. Additionally, the hydrogel is soft, elastic, transparent and self-healing. The rational combination of the mechanical and electrical properties renders the as-prepared hydrogel with excellent sensing performances and cycling stability, and therefore enables it to perform as a sensory unit of a complete platform for the recognition of some complicated human behaviors. Specifically, with the integration of machine learning module, the hydrogel-based platform exhibits great recognition accuracies to human handwriting motions from single letters to words and phrases after proper training. The combination of superior mechanical performances and intelligent sensing functions within this hydrogel-based ionic skin unlocks its potential as the intelligent human-device interface, which promotes the application of artificial intelligence in customized electronic devices.

Polymer Gels

Polymer Gels
Author: Vijay Kumar Thakur
Publisher: Springer
Total Pages: 412
Release: 2018-08-07
Genre: Technology & Engineering
ISBN: 9811060835

Download Polymer Gels Book in PDF, Epub and Kindle

This book addresses a range of synthesis and characterization techniques that are critical for tailoring and broadening the various aspects of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the science and fundamentals of both synthetic and natural polymer-based gels. Topics covered include: synthesis and structure of physically/chemically cross-linked polymer-gels/polymeric nanogels; gel formation through non-covalent cross-linking; molecular design and characterization; polysaccharide-based polymer gels: synthesis, characterization, and properties; modified polysaccharide gels: silica-based polymeric gels as platforms for the delivery of pharmaceuticals; gel-based approaches in genomic and proteomic sciences; emulgels in drug delivery; and organogels. The book provides a cutting-edge resource for researchers and scientists working in various fields involving polymers, biomaterials, bio-nanotechnology and functional materials.

Polymeric Drug Delivery Systems

Polymeric Drug Delivery Systems
Author: Glen S. Kwon
Publisher: CRC Press
Total Pages: 680
Release: 2005-04-12
Genre: Medical
ISBN: 9780824725327

Download Polymeric Drug Delivery Systems Book in PDF, Epub and Kindle

Emphasizing four major classes of polymers for drug delivery-water-soluble polymers, hydrogels, biodegradable polymers, and polymer assemblies-this reference surveys efforts to adapt, modify, and tailor polymers for challenging molecules such as poorly water-soluble compounds, peptides/proteins, and plasmid DNA.

Polymeric Gels

Polymeric Gels
Author: Kunal Pal
Publisher: Woodhead Publishing
Total Pages: 570
Release: 2018-06-15
Genre: Technology & Engineering
ISBN: 0081021801

Download Polymeric Gels Book in PDF, Epub and Kindle

Polymeric Gels: Characterization, Properties and Biomedical Applications covers the fundamentals and applications of polymeric gels. Particular emphasis is given to their synthesis, properties and characteristics, with topics such as natural, synthetic, and smart polymeric gels, medical applications, and advancements in conductive and magnetic gels presented. The book covers the basics and applications of hydrogels, providing readers with a comprehensive guide on the types of polymeric gels used in the field of biomedical engineering. Provides guidance for decisions on the suitability and appropriateness of a synthetic route and characterization technique for particular polymeric networks Analyzes and compares experimental data Presents in-depth information on the physical properties of polymeric gels using mathematical models Uses an interdisciplinary approach to discuss potential new applications for both established polymeric gels and recent advances

Nanotechnology in Drug Delivery

Nanotechnology in Drug Delivery
Author: Melgardt M. de Villiers
Publisher: Springer Science & Business Media
Total Pages: 681
Release: 2008-10-29
Genre: Medical
ISBN: 0387776680

Download Nanotechnology in Drug Delivery Book in PDF, Epub and Kindle

The reader will be introduced to various aspects of the fundamentals of nanotechnology based drug delivery systems and the application of these systems for the delivery of small molecules, proteins, peptides, oligonucleotides and genes. How these systems overcome challenges offered by biological barriers to drug absorption and drug targeting will also be described.

Temperature-Responsive Polymers

Temperature-Responsive Polymers
Author: Vitaliy V. Khutoryanskiy
Publisher: John Wiley & Sons
Total Pages: 408
Release: 2018-06-01
Genre: Technology & Engineering
ISBN: 1119157803

Download Temperature-Responsive Polymers Book in PDF, Epub and Kindle

An authoritative resource that offers an understanding of the chemistry, properties and applications of temperature-responsive polymers With contributions from a distinguished panel of experts, Temperature-Responsive Polymers puts the focus on hydrophilic polymers capable of changing their physicochemical properties in response to changes in environmental temperature. The contributors review the chemistry of these systems, and discuss a variety of synthetic approaches for preparation of temperature-responsive polymers, physicochemical methods of their characterisation and potential applications in biomedical areas. The text reviews a wide-variety of topics including: The characterisation of temperature-responsive polymers; Infrared and Raman spectroscopy; Applications of temperature-responsive polymers grafted onto solid core nanoparticles; and much more. The contributors also explore how temperature-responsive polymers can be used in the biomedical field for applications such as tissue engineering. This important resource: Offers an important synthesis of the current research on temperature-responsive polymers Covers the chemistry, the synthetic approaches for presentation and the physiochemical method of temperature-responsive polymers Includes a review of the fundamental characteristics of temperature-responsive polymers Explores many of the potential applications in biomedical science, including drug delivery and gene therapy Written for polymer scientists in both academia and industry as well as postgraduate students working in the area of stimuli-responsive materials, this vital text offers an exploration of the chemistry, properties and current applications of temperature-responsive polymers.