Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals

Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals
Author: Jurij J Sidor
Publisher: Mdpi AG
Total Pages: 144
Release: 2021-11-15
Genre: Technology & Engineering
ISBN: 9783036523842

Download Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals Book in PDF, Epub and Kindle

In the special issue related to Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals, we presented a wide spectrum of articles dealing with modelling of microstructural aspects involved in deformation and recrystallization as well as simulation of microstructure-based and texture-based properties in various metals. The latest advances in the theoretical interpretation of mesoscopic transformations based on experimental observations were partially discussed in the current special issue. The studies dealing with the modelling of structure-property relationships are likewise analyzed in the present collection of manuscripts. The contributions in the current collection evidently demonstrate that the properties of metallic materials are microstructure dependent and therefore the thermomechanical processing (TMP) of the polycrystalline aggregates should be strictly controlled to guarantee the desired bunch of qualities. Given this, the assessment of microstructure evolution in metallic systems is of extraordinary importance. Since the trial-error approach is a time-consuming and quite expensive methodology, the materials research community tends to employ a wide spectrum of computational approaches to simulate each chain of TMP and tune the processing variables to ensure the necessary microstructural state which will provide desired performance in the final product. Although many hidden facets of various technological processes and related microstructural changes were revealed in the submitted works by employing advanced computational approaches, nevertheless, the contributions collected in this issue clearly show that further efforts are required in the field of modelling to understand the complexity of material's world. The final goal of modelling efforts might be a development of a comprehensive model, which will be capable of describing many aspects of microstructure evolution during thermomechanical processing.

Microstructure Evolution in Metal Forming Processes

Microstructure Evolution in Metal Forming Processes
Author: J Lin
Publisher: Elsevier
Total Pages: 409
Release: 2012-07-09
Genre: Technology & Engineering
ISBN: 0857096346

Download Microstructure Evolution in Metal Forming Processes Book in PDF, Epub and Kindle

Monitoring and control of microstructure evolution in metal processing is essential in developing the right properties in a metal. Microstructure evolution in metal forming processes summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes. Part one reviews the general principles involved in understanding and controlling microstructure evolution in metal forming. Techniques for modelling microstructure and optimising processes are explored, along with recrystallisation, grain growth, and severe plastic deformation. Microstructure evolution in the processing of steel is the focus of part two, which reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels. Part three examines microstructure evolution in the processing of other metals, including ageing behaviour in the processing of aluminium and microstructure control in processing nickel, titanium and other special alloys. With its distinguished editors and international team of expert contributors, Microstructure evolution in metal forming processes is an invaluable reference tool for metal processors and those using steels and other metals, as well as an essential guide for academics and students involved in fundamental metal research. Summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes Comprehensively discusses microstructure evolution in the processing of steel and reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels Examines microstructure evolution in the processing of other materials, including ageing behaviour in the processing of aluminium

Recrystallization and Related Annealing Phenomena

Recrystallization and Related Annealing Phenomena
Author: F.J. Humphreys
Publisher: Elsevier
Total Pages: 520
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 008098388X

Download Recrystallization and Related Annealing Phenomena Book in PDF, Epub and Kindle

The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes. The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher. The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.

Numerical Modelling and Simulation of Metal Processing

Numerical Modelling and Simulation of Metal Processing
Author: Christof Sommitsch
Publisher: MDPI
Total Pages: 374
Release: 2021-08-16
Genre: Technology & Engineering
ISBN: 303651080X

Download Numerical Modelling and Simulation of Metal Processing Book in PDF, Epub and Kindle

This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.

Modelling Microstructure-property Relationships in Polycrystalline Metals Using New Fast Fourier Transform-based Crystal Plasticity Frameworks

Modelling Microstructure-property Relationships in Polycrystalline Metals Using New Fast Fourier Transform-based Crystal Plasticity Frameworks
Author: Jaspreet Singh Nagra
Publisher:
Total Pages: 191
Release: 2019
Genre: Aluminum alloys
ISBN:

Download Modelling Microstructure-property Relationships in Polycrystalline Metals Using New Fast Fourier Transform-based Crystal Plasticity Frameworks Book in PDF, Epub and Kindle

The present thesis develops several new full-field, fast Fourier transform (FFT)-based crystal plasticity modelling tools for microstructure engineering. These tools are used to explore elasto-viscoplastic deformation, localized deformation, 3D grain morphology, microstructure evolution, dynamic recrystallization and their effects on formability of polycrystalline metals with particular attention paid to sheet alloys of aluminum and magnesium. The new FFT-based crystal plasticity models developed in this work overcome several inherent problems present in the well-known crystal plasticity finite element method (CP-FEM) and elasto-viscoplastic fast Fourier transform method (EVP-FFT) in solving representative volume element (RVE)-based problems. The new models have demonstrated significant fidelity in simulating various deformation phenomena in polycrystalline metals and prove to be faster and accurate alternatives for obtaining full-field solutions of micromechanical fields in aluminum and magnesium sheet alloys. In particular to the aluminum alloys, which are currently replacing heavier steel parts in the automotive industry, the sheet aluminum alloys have significantly improved corrosion resistance and strength-to-weight properties in comparison to steel. However, aluminum alloys are still outperformed by steel in terms of formability. To improve the formability of an aluminum sheet, one method is to develop physics-based predictive computational tools, which can accurately and efficiently predict the behavior of aluminum alloys and thus allow designing the microstructure with desired properties. Accordingly, in first part of this thesis, a novel numerical framework for modelling large deformation in aluminum alloys is developed. The developed framework incorporates the rate-dependent crystal plasticity theory into the fast Fourier transform (FFT)-based formulation, and this is named as rate tangent crystal plasticity-based fast Fourier transform (i.e., RTCP-FFT) framework. This framework is used as a predictive tool for obtaining stress-strain response and texture evolution in new strain-paths with minimal calibration for aluminum alloys. The RTCP-FFT framework is benchmarked against an existing FFT-based model at small strains and finite element-based model at large strains, respectively, for the case of an artificial Face Centered Cubic (FCC) polycrystal. The predictive capability as well as the computational efficiency of the developed framework are then demonstrated for aluminum alloy (AA) 5754. In the second part of this thesis, the RTCP-FFT framework, developed earlier, is coupled with the Marciniak and Kuczynski (MK) approach to establish a new full-field framework for generating forming limit diagrams (FLDs) of aluminum sheet alloys, e.g., AA3003 and AA5754. The new coupled framework is able to investigate the complex effects of grain morphology, local deformation, local texture and grain interactions on the predictions of forming limit strains. This study reveals that among the various microstructural features, the grain morphology has the strongest effect on the predicted FLDs for aluminum alloys. Furthermore, this study also suggests that the FLD predictions can be significantly improved if the actual grain structure of the material is properly accounted for in the crystal plasticity models. In addition to aluminum alloys, magnesium alloys are getting significant attention by the automotive industry due to their light weight and high specific strength. However, the automotive industry has not been able to take full advantage of the lightweight characteristic of magnesium alloys because of their poor formability at room temperature. Therefore, to enhance the workability and restore their ductility, the magnesium alloys are formed at elevated temperature. High temperature forming of magnesium alloys is often accompanied by dynamic recrystallization (DRX), which allows the final microstructure, as well as the properties of the material (e.g., initial grain size, initial texture, etc.), to be controlled. Therefore, DRX coupled with a full-field crystal plasticity FLD framework can be used as a tool to design microstructure of a material. Since it would be beneficial to be able to redesign the material properties of magnesium alloys using physics-based computational tools than using physical experiments, this work takes a step ahead towards such an outcome by presenting a new framework that predicts DRX and models its effects on the formability of magnesium alloys. Accordingly, in the third part of this thesis, a new full-field, efficient and mesh-free numerical framework, to model microstructure evolution, dynamic recrystallization (DRX) and formability in hexagonal closed-packed (HCP) metals such as magnesium alloys at warm temperatures, is developed. This coupled framework combines three new FFT-based approaches, namely: (a) crystal plasticity modelling of HCP alloys, (b) DRX model, and (c) MK model. First, a rate tangent-fast Fourier transform-based elasto-viscoplastic crystal plasticity constitutive model for HCP metals (RTCP-FFT-HCP) is developed. Then, it is coupled with a probabilistic cellular automata (CA) approach to model DRX. Furthermore, this new model is coupled with the Marciniak-Kuczynski (M-K) approach to model formability of magnesium alloys at elevated temperatures. The RTCP-FFT-HCP model computes macro stress-strain response, twinning volume fraction, micromechanical fields, texture evolution and local dislocation density. Nucleation of new grains and their subsequent growth is modeled using the cellular automata approach with probabilistic state switching rule. This framework is validated at each level of the coupling for magnesium sheet alloy, AZ31. First, the RTCP-FFT-HCP model is validated by comparing the simulated macro stress-strain responses under uniaxial tension and compression with experimental measurements at room temperature. Furthermore, the texture evolution predicted with the new model is compared with experiments. The predictions show a good agreement with experiments with high degree of accuracy. Next, the forming limit diagrams (FLDs) are simulated at 100 C, 200 C and 300 C, respectively, for AZ31 sheet alloy considering the effects of DRX. The predicted FLDs show very good agreement with the experimental measurements. The study reveals that the DRX strongly affects the deformed grain structure, grain size and texture evolution and also highlights the importance accounting for DRX during FLD simulations at high temperatures.

Inelastic Deformation of Metals

Inelastic Deformation of Metals
Author: Donald C. Stouffer
Publisher: John Wiley & Sons
Total Pages: 522
Release: 1996-01-05
Genre: Technology & Engineering
ISBN: 9780471021438

Download Inelastic Deformation of Metals Book in PDF, Epub and Kindle

Using a totally new approach, this groundbreaking book establishesthe logical connections between metallurgy, materials modeling, andnumerical applications. In recognition of the fact that classicalmethods are inadequate when time effects are present, or whencertain types of multiaxial loads are applied, the new, physicallybased state variable method has evolved to meet these needs.Inelastic Deformation of Metals is the first comprehensivepresentation of this new technology in book form. It developsphysically based, numerically efficient, and accurate methods forpredicting the inelastic response of metals under a variety ofloading and environmental conditions. More specifically, Inelastic Deformation of Metals: * Demonstrates how to use the metallurgical information to developmaterial models for structural simulations and low cyclic fatiguepredictions. It presents the key features of classical and statevariable modeling, describes the different types of models andtheir attributes, and provides methods for developing models forspecial situations. This book's innovative approach covers such newtopics as multiaxial loading, thermomechanical loading, and singlecrystal superalloys. * Provides comparisons between data and theory to help the readermake meaningful judgments about the value and accuracy of aparticular model and to instill an understanding of how metalsrespond in real service environments. * Analyzes the numerical methods associated with nonlinearconstitutive modeling, including time independent, time dependentnumerical procedures, time integration schemes, inversiontechniques, and sub-incrementing. Inelastic Deformation of Metals is designed to give theprofessional engineer and advanced student new and expandedknowledge of metals and modeling that will lead to more accuratejudgments and more efficient designs. In contrast to existing plasticity books, which discuss few if anycorrelations between data and models, this breakthrough volumeshows engineers and advanced students how materials and modelsactually do behave in real service environments. As greater demandsare placed on technology, the need for more meaningful judgmentsand more efficient designs increases dramatically. Incorporatingthe state variable approach, Inelastic Deformation of Metals: * Provides an overview of a wide variety of metal responsecharacteristics for rate dependent and rate independent loadingconditions * Shows the correlations between the mechanical response propertiesand the deformation mechanisms, and describes how to use thisinformation in constitutive modeling * Presents different modeling options and discusses the usefulnessand limitations of each modeling approach, with material parametersfor each model * Offers numerous examples of material response and correlationwith model predictions for many alloys * Shows how to implement nonlinear material models in stand-aloneconstitutive model codes and finite element codes An innovative, comprehensive, and essential book, InelasticDeformation of Metals will help practicing engineers and advancedstudents in mechanical, aerospace, civil, and metallurgicalengineering increase their professional skills in the moderntechnological environment.

Processing-Structure-Property Relationships in Metals

Processing-Structure-Property Relationships in Metals
Author: Alessandra Varone
Publisher: MDPI
Total Pages: 240
Release: 2019-11-04
Genre: Technology & Engineering
ISBN: 3039217704

Download Processing-Structure-Property Relationships in Metals Book in PDF, Epub and Kindle

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Modelling Hot Deformation of Steels

Modelling Hot Deformation of Steels
Author: John G. Lenard
Publisher: Springer Science & Business Media
Total Pages: 154
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3642525156

Download Modelling Hot Deformation of Steels Book in PDF, Epub and Kindle

Computer Aided Engineering may be defined as an approach to solving tech nological problems in which most or all of the steps involved are automated through the use of computers, data bases and mathematical models. The success of this ap proach, considering hot forming, is tied very directly to an understanding of material behaviour when subjected to deformation at high temperatures. There is general agreement among engineers that not enough is known about that topic -and this gave the initial impetus for the project described in the present study. The authors secured a research grant from NATO (Special Research Grant #390/83) with a mandate to study the "State-of-the-Art of Controlled Rolling". What follows is the result of that study. There are five chapters in this Monograph. The first one, entitled "State-of-the Art of Controlled Rolling" discusses industrial and laboratory practices and research designed to aid in the development of microalloyed steels of superior quality. Follow ing this is the chapter "Methods of Determining Stress-Strain Curves at Elevated Temperatures". The central concern here is the material's resistance to deformation or in other words, its flow strength, the knowledge of which is absolutely essential for the efficient and economical utilization of the computers controlling the rolling process.

Recrystallization and Related Annealing Phenomena

Recrystallization and Related Annealing Phenomena
Author: Anthony Rollett
Publisher: Newnes
Total Pages: 736
Release: 2017-07-24
Genre: Science
ISBN: 0080982697

Download Recrystallization and Related Annealing Phenomena Book in PDF, Epub and Kindle

Recrystallization and Related Annealing Phenomena, Third Edition, fulfills the information needs of materials scientists in both industry and academia. The subjects treated in the book are all active research areas, forming a major part of at least four regular international conference series. This new third edition ensures the reader has access to the latest findings, and is essential reading to those working in the forefront of research in universities and laboratories. For those in industry, the book highlights applications of the research and technology, exploring, in particular, the significant progress made recently in key areas such as deformed state, including deformation to very large strains, the characterization of microstructures by electron backscatter diffraction, the modeling and simulation of annealing, and continuous recrystallization. Includes over 50% of new, revised, and updated material, highlighting the significant recent literature results in grain growth in non-crystallizing systems, 3D characterization techniques, quantitative modeling techniques, and all-new appendices on texture and measurements Contains synthesized, detailed coverage from leading authors that bridge the gap between theory and practice Includes a critical level of synthesis and pedagogy with an authored rather than edited volume

Deformation Based Processing of Materials

Deformation Based Processing of Materials
Author: Heng Li
Publisher: Elsevier
Total Pages: 350
Release: 2019-02-15
Genre: Technology & Engineering
ISBN: 0128143819

Download Deformation Based Processing of Materials Book in PDF, Epub and Kindle

Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance Includes modelling and simulation of the entire deformation process Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products