Introduction to Magnetic Random-Access Memory

Introduction to Magnetic Random-Access Memory
Author: Bernard Dieny
Publisher: John Wiley & Sons
Total Pages: 264
Release: 2016-11-14
Genre: Science
ISBN: 1119079357

Download Introduction to Magnetic Random-Access Memory Book in PDF, Epub and Kindle

Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.

Introduction to Magnetic Random-Access Memory

Introduction to Magnetic Random-Access Memory
Author: Bernard Dieny
Publisher: John Wiley & Sons
Total Pages: 277
Release: 2016-12-12
Genre: Science
ISBN: 111900974X

Download Introduction to Magnetic Random-Access Memory Book in PDF, Epub and Kindle

Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.

Magnetic Memory Technology

Magnetic Memory Technology
Author: Denny D. Tang
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2021-01-07
Genre: Science
ISBN: 1119562236

Download Magnetic Memory Technology Book in PDF, Epub and Kindle

STAY UP TO DATE ON THE STATE OF MRAM TECHNOLOGY AND ITS APPLICATIONS WITH THIS COMPREHENSIVE RESOURCE Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond delivers a combination of foundational and advanced treatments of the subjects necessary for students and professionals to fully understand MRAM and other non-volatile memories, like PCM, and ReRAM. The authors offer readers a thorough introduction to the fundamentals of magnetism and electron spin, as well as a comprehensive analysis of the physics of magnetic tunnel junction (MTJ) devices as it relates to memory applications. This book explores MRAM's unique ability to provide memory without requiring the atoms inside the device to move when switching states. The resulting power savings and reliability are what give MRAM its extraordinary potential. The authors describe the current state of academic research in MRAM technology, which focuses on the reduction of the amount of energy needed to reorient magnetization. Among other topics, readers will benefit from the book's discussions of: An introduction to basic electromagnetism, including the fundamentals of magnetic force and other concepts An thorough description of magnetism and magnetic materials, including the classification and properties of magnetic thin film properties and their material preparation and characterization A comprehensive description of Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) devices and their equivalent electrical model Spin current and spin dynamics, including the properties of spin current, the Ordinary Hall Effect, the Anomalous Hall Effect, and the spin Hall effect Different categories of magnetic random-access memory, including field-write mode MRAM, Spin-Torque-Transfer (STT) MRAM, Spin-Orbit Torque (SOT) MRAM, and others Perfect for senior undergraduate and graduate students studying electrical engineering, similar programs, or courses on topics like spintronics, Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond also belongs on the bookshelves of engineers and other professionals involved in the design, development, and manufacture of MRAM technologies.

Magnetoresistive Random Access Memory (MRAM) Technology

Magnetoresistive Random Access Memory (MRAM) Technology
Author: Shimon Lnu
Publisher:
Total Pages: 85
Release: 2010
Genre:
ISBN:

Download Magnetoresistive Random Access Memory (MRAM) Technology Book in PDF, Epub and Kindle

Ability to store data is one of the key utilities in modern computer. The memory industry grows as demand for denser, smaller, cheaper and faster memory device increases. The term memory has been used widely in computing jargon to refer to random access memory (RAM). RAMs are built with steady improvement over the years owing to semiconductor integrated circuit (IC) technology. However, RAMs are still struggling to achieve all aspect of the paramount design intended for memory device: non-volatile (including radiation hardness and materials stability), dense, fast, low power consumption, low cost, IC technology compatible and read/write (R/W) endurance. Magnetoresistive RAM (MRAM) offers such possibility. MRAM has just entered in 2002 with 128kbit product, but it has improved to reach 16 Mbit density in the year 2009, that makes a 128 density multiplication in 7 years. The prototyping has gone through an even higher density at 64 Mbit in 2010, along with optimistic view of reaching Gbit density in the near future by the introduction of spin-torque-transfer MRAM. A close look at the presented MRAM cost model, the cost of 64 and 128Mbit module can go as low as 4.4-4.9 cents/Mbit and 2.8-3.0 cents/Mbit respectively. Comparing to similar density (64 or 128 Mbit) DRAM product - around 1993-1996, DRAM pricing is revolving around $1/Mbit, which makes MRAM a cost competitive product with respect to DRAM or other memories. Evidently, MRAM cost looks promising to compete with superior memory products such as DRAM and Flash, while on its way, it will replace the first few market penetration areas such as embedded memory and SOC circuit for mobile/automotive application.

Handbook of Spintronics

Handbook of Spintronics
Author: Yongbing Xu
Publisher: Springer
Total Pages: 0
Release: 2015-10-14
Genre: Science
ISBN: 9789400768918

Download Handbook of Spintronics Book in PDF, Epub and Kindle

Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.

Nanoelectronics and Information Technology

Nanoelectronics and Information Technology
Author: Rainer Waser
Publisher: John Wiley & Sons
Total Pages: 1041
Release: 2012-05-29
Genre: Technology & Engineering
ISBN: 3527409270

Download Nanoelectronics and Information Technology Book in PDF, Epub and Kindle

Fachlich auf höchstem Niveau, visuell überzeugend und durchgängig farbig illustriert: Das ist die neue Auflage der praxisbewährten Einführung in spezialisierte elektronische Materialien und Bauelemente aus der Informationstechnologie. Über ein Drittel des Inhalts ist neu, alle anderen Beiträge wurden gründlich überarbeitet und aktualisiert.

Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials
Author: David J. Sellmyer
Publisher: 清华大学出版社有限公司
Total Pages: 484
Release: 2005
Genre: Magnetic materials
ISBN: 9787302089247

Download Handbook of Advanced Magnetic Materials Book in PDF, Epub and Kindle

Nanomagnetic Materials

Nanomagnetic Materials
Author: Akinobu Yamaguchi
Publisher: Elsevier
Total Pages: 814
Release: 2021-06-28
Genre: Science
ISBN: 0128223545

Download Nanomagnetic Materials Book in PDF, Epub and Kindle

Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism. Explains manufacturing principles and process for nanomagnetic materials Discusses physical and chemical properties and potential industrial applications, such as magnetic data storage, sensors, oscillator, permanent magnets, power generations, and biomedical applications Assesses the major challenges of using magnetic nanomaterials on a broad scale