Functional Analysis, Calculus of Variations and Numerical Methods for Models in Physics and Engineering

Functional Analysis, Calculus of Variations and Numerical Methods for Models in Physics and Engineering
Author: Fabio Silva Botelho
Publisher: CRC Press
Total Pages: 576
Release: 2020-11-02
Genre: Mathematics
ISBN: 1000205878

Download Functional Analysis, Calculus of Variations and Numerical Methods for Models in Physics and Engineering Book in PDF, Epub and Kindle

The book discusses basic concepts of functional analysis, measure and integration theory, calculus of variations and duality and its applications to variational problems of non-convex nature, such as the Ginzburg-Landau system in superconductivity, shape optimization models, dual variational formulations for micro-magnetism and others. Numerical Methods for such and similar problems, such as models in flight mechanics and the Navier-Stokes system in fluid mechanics have been developed through the generalized method of lines, including their matrix finite dimensional approximations. It concludes with a review of recent research on Riemannian geometry applied to Quantum Mechanics and Relativity. The book will be of interest to applied mathematicians and graduate students in applied mathematics. Physicists, engineers and researchers in related fields will also find the book useful in providing a mathematical background applicable to their respective professional areas.

Advanced Calculus and its Applications in Variational Quantum Mechanics and Relativity Theory

Advanced Calculus and its Applications in Variational Quantum Mechanics and Relativity Theory
Author: Fabio Silva Botelho
Publisher: CRC Press
Total Pages: 335
Release: 2021-07-12
Genre: Mathematics
ISBN: 1000411028

Download Advanced Calculus and its Applications in Variational Quantum Mechanics and Relativity Theory Book in PDF, Epub and Kindle

Presents a rigorous study on manifolds in Rn. Develops in details important standard topics on advanced calculus, such as the differential forms in surfaces in Rn. Presents a proposal to connect classical and quantum mechanics. Presents variational formulations for relativistic mechanics through semi-Riemannian geometry and differential geometry. Develops a rigorous study on causal structures in space-time manifolds.

The Numerical Method of Lines and Duality Principles Applied to Models in Physics and Engineering

The Numerical Method of Lines and Duality Principles Applied to Models in Physics and Engineering
Author: Fabio Silva Botelho
Publisher: CRC Press
Total Pages: 328
Release: 2024-02-06
Genre: Science
ISBN: 1003848427

Download The Numerical Method of Lines and Duality Principles Applied to Models in Physics and Engineering Book in PDF, Epub and Kindle

The book includes theoretical and applied results of a generalization of the numerical method of lines. A Ginzburg-Landau type equation comprises the initial application, with detailed explanations about the establishment of the general line expressions. Approximate numerical procedures have been developed for a variety of equation types, including the related algorithms and software. The applications include the Ginzburg-Landau system in superconductivity, applications to the Navier-Stokes system in fluid mechanics and, among others, models in flight mechanics. In its second and final parts, the book develops duality principles and numerical results for other similar and related models. The book is meant for applied mathematicians, physicists and engineers interested in numerical methods and concerning duality theory. It is expected the text will serve as a valuable auxiliary project tool for some important engineering and physics fields of research.

Mathematical Analysis and Numerical Methods for Science and Technology

Mathematical Analysis and Numerical Methods for Science and Technology
Author: Robert Dautray
Publisher: Springer
Total Pages: 604
Release: 2015-03-20
Genre: Mathematics
ISBN: 364261566X

Download Mathematical Analysis and Numerical Methods for Science and Technology Book in PDF, Epub and Kindle

These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences.

Functional Analysis, Calculus of Variations and Optimal Control

Functional Analysis, Calculus of Variations and Optimal Control
Author: Francis Clarke
Publisher: Springer Science & Business Media
Total Pages: 589
Release: 2013-02-06
Genre: Mathematics
ISBN: 1447148207

Download Functional Analysis, Calculus of Variations and Optimal Control Book in PDF, Epub and Kindle

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.

Functional Analysis and Applied Optimization in Banach Spaces

Functional Analysis and Applied Optimization in Banach Spaces
Author: Fabio Botelho
Publisher: Springer
Total Pages: 584
Release: 2014-06-12
Genre: Mathematics
ISBN: 3319060740

Download Functional Analysis and Applied Optimization in Banach Spaces Book in PDF, Epub and Kindle

​This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

Applied Functional Analysis

Applied Functional Analysis
Author: Abul Hasan Siddiqi
Publisher: CRC Press
Total Pages: 614
Release: 2003-09-19
Genre: Mathematics
ISBN: 9780203913017

Download Applied Functional Analysis Book in PDF, Epub and Kindle

The methods of functional analysis have helped solve diverse real-world problems in optimization, modeling, analysis, numerical approximation, and computer simulation. Applied Functional Analysis presents functional analysis results surfacing repeatedly in scientific and technological applications and presides over the most current analytical and n

Functional Analysis Tools for Practical Use in Sciences and Engineering

Functional Analysis Tools for Practical Use in Sciences and Engineering
Author: Carlos A. de Moura
Publisher: Springer Nature
Total Pages: 223
Release: 2022-10-13
Genre: Mathematics
ISBN: 3031105982

Download Functional Analysis Tools for Practical Use in Sciences and Engineering Book in PDF, Epub and Kindle

This textbook describes selected topics in functional analysis as powerful tools of immediate use in many fields within applied mathematics, physics and engineering. It follows a very reader-friendly structure, with the presentation and the level of exposition especially tailored to those who need functional analysis but don’t have a strong background in this branch of mathematics. For every tool, this work emphasizes the motivation, the justification for the choices made, and the right way to employ the techniques. Proofs appear only when necessary for the safe use of the results. The book gently starts with a road map to guide reading. A subsequent chapter recalls definitions and notation for abstract spaces and some function spaces, while Chapter 3 enters dual spaces. Tools from Chapters 2 and 3 find use in Chapter 4, which introduces distributions. The Linear Functional Analysis basic triplet makes up Chapter 5, followed by Chapter 6, which introduces the concept of compactness. Chapter 7 brings a generalization of the concept of derivative for functions defined in normed spaces, while Chapter 8 discusses basic results about Hilbert spaces that are paramount to numerical approximations. The last chapter brings remarks to recent bibliographical items. Elementary examples included throughout the chapters foster understanding and self-study. By making key, complex topics more accessible, this book serves as a valuable resource for researchers, students, and practitioners alike that need to rely on solid functional analysis but don’t need to delve deep into the underlying theory.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering
Author: Christian Constanda
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2013-08-13
Genre: Mathematics
ISBN: 1461478286

Download Integral Methods in Science and Engineering Book in PDF, Epub and Kindle

​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​