Experimental Investigation of Geomechanical Aspects of Hydraulic Fracturing Unconventional Formations

Experimental Investigation of Geomechanical Aspects of Hydraulic Fracturing Unconventional Formations
Author: Emad Abbad Alabbad
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:

Download Experimental Investigation of Geomechanical Aspects of Hydraulic Fracturing Unconventional Formations Book in PDF, Epub and Kindle

Understanding the mechanisms that govern hydraulic fracturing applications in unconventional formations, such as gas-bearing shales, is of increasing interest to the petroleum upstream industry. Among such mechanisms, the geomechanical interactions between hydraulic fractures and pre-existing fractures on one hand, and simultaneous multiple hydraulic fractures on the other hand are seen of high importance. Although the petroleum engineering and related literature contains a number of studies that discusses such topics of hydraulic fracture interactions, there still remain some aspects that require answers, validations, or further supporting data. Particularly, experimental evidence is fairly scarce and keenly needed to solidify the understanding of such complex applications. In this work, the investigation methodology uses a series of hydraulic fracturing laboratory tests performed on synthetic rocks made of gypsum-based cements such as hydrostone and plaster in various experimental set ups. Those laboratory tests aim to closely investigate hydraulic fracture intersection with pre-existing fractures by assessing some factors that govern its outcomes. Specifically, the roles of the pre-existing fracture cementation, aperture, and relative height on the intersection mode are examined. The results show dominant effect of the cement-fill type relative to the host-rock matrix in determining whether hydraulic fracture crossing the pre-existing interface may occur. Similarly, hydraulic fracture height relative to the height of the pre-existing fracture may dictate the intersection results. However, the intersection mode seems to be insensitive of the pre-existing fracture aperture. Moreover, simultaneous multi-fracture propagation is examined and found to be impacted by the interference of the stresses induced from each fracturing source on neighboring fracturing sources. Such stress interference increases as the number of the propagating hydraulic fractures increase. While hydraulic fractures initiating from fracturing sources located in the middle of the fracturing stage seem to have inhibited propagation, outer hydraulic fractures may continue propagating with outward curvatures. Overall, the experimental results and analyses offer more insights for understanding hydraulic fracture complexity in unconventional formations.

Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Geomechanics and Hydraulic Fracturing for Shale Reservoirs
Author: Yu Wang
Publisher: Scientific Research Publishing, Inc. USA
Total Pages: 383
Release: 2020-07-01
Genre: Art
ISBN: 1618968963

Download Geomechanics and Hydraulic Fracturing for Shale Reservoirs Book in PDF, Epub and Kindle

This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Exploitation of Unconventional Oil and Gas Resources

Exploitation of Unconventional Oil and Gas Resources
Author: Kenneth Imo-Imo Israel Eshiet
Publisher:
Total Pages: 152
Release: 2019-07-10
Genre: Chemistry, Technical
ISBN: 1838811079

Download Exploitation of Unconventional Oil and Gas Resources Book in PDF, Epub and Kindle

The stimulation of unconventional hydrocarbon reservoirs is proven to improve their productivity to an extent that has rendered them economically viable. Generally, the stimulation design is a complex process dependent on intertwining factors such as the history of the formation, rock and reservoir fluid type, lithology and structural layout of the formation, cost, time, etc. A holistic grasp of these can be daunting, especially for people without sufficient experience and/or expertise in the exploitation of unconventional hydrocarbon reserves. This book presents the key facets integral to producing unconventional resources, and how the different components, if pieced together, can be used to create an integrated stimulation design. Areas covered are as follows: • stimulation methods, • fracturing fluids, • mixing and behavior of reservoir fluids, • assessment of reservoir performance, • integration of surface drilling data, • estimation of geomechanical properties and hydrocarbon saturation, and • health and safety. Exploitation of Unconventional Oil and Gas Resources: Hydraulic Fracturing and Other Recovery and Assessment Techniques is an excellent introduction to the subject area of unconventional oil and gas reservoirs, but it also complements existing information in the same discipline. It is an essential text for higher education students and professionals in academia, research, and the industry.

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
Total Pages: 495
Release: 2019-05-16
Genre: Business & Economics
ISBN: 1107087074

Download Unconventional Reservoir Geomechanics Book in PDF, Epub and Kindle

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations

Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations
Author: Ahmed Alzahabi
Publisher: CRC Press
Total Pages: 262
Release: 2018-07-03
Genre: Technology & Engineering
ISBN: 1351618237

Download Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations Book in PDF, Epub and Kindle

Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry’s ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.

Secondary Interaction of Fracturing Fluid and Shale Plays

Secondary Interaction of Fracturing Fluid and Shale Plays
Author: Reza Keshavarzi
Publisher:
Total Pages: 0
Release: 2021
Genre: Geotechnical engineering
ISBN:

Download Secondary Interaction of Fracturing Fluid and Shale Plays Book in PDF, Epub and Kindle

During hydraulic fracturing in unconventional tight formations a high percentage of the injected fluid may remain in the formation and only a small portion of the fracturing fluid is typically recovered. Although spontaneous imbibition is mainly introduced as the main dominating mechanism, a clear understanding of the fundamental mechanisms through which the fracturing fluid would interact with the formation remains a challenge. The impact of these mechanisms on rock property changes is even more challenging but is important to account for post-fracturing reservoir characterization. In this study, an integrated analytical-experimental-numerical approach was adopted to study these issues using a case study within the Montney Formation in Farrell Creek field in northeast British Columbia. The results of experiments on Montney samples from different depths revealed that because of spontaneous water imbibition, the geomechanical properties of the samples were altered. Also, small scale heterogeneity in tight gas formations and shale results in these property changes occurring at various scales, such as beds. Property changes occurring along the beds and bedding planes, as a result of interaction with hydraulic fracturing fluid, can contribute to increased potential for shear failure along these planes. Therefore, a systematic micro-scale analysis (including micro-indentation and micro-scratch along the beds to capture micro-geomechanical responses) and macro-scale analysis (including ultrasonic measurements, uniaxial compressive loading in high and low capillary suctions and unloading-reloading cycles at varying capillary suction) have been developed and applied to capture the changes in rock behavior in different scales as a result of spontaneous water imbibition and how different behaviors in micro-scale would affect the responses in macro-scale. QEMSCAN analysis, nitrogen adsorption-desorption tests, thermogravimetric analysis (TGA), capillary condensation experiments, pressure-decay and pulse-decay permeability measurements and direct shear tests were also completed for quantitative analysis of minerals, pore shapes and porosity, initial water saturation, capillary suction as a function of water saturation, permeability and strength parameters in both macro-scale and micro-scale (bed-scale). QEMSCAN analysis indicated that mineral components were not the same in different beds and they could be categorized into quartz-rich and clay-rich. The results of the experimental phase indicated that the geomechanical and flow properties of Montney specimens were altered due to fluid imbibition. As the water saturation and capillary suction were changing in quartz-rich and clay-rich beds, they responded differently which would trigger some geomechanical behaviors in macro scale. In addition, it was observed that capillary suction would add extra stiffness and strength to the media and as it was diminishing, the media became weaker. A nonlinear response with hysteresis during unloading-reloading cycles at varying capillary suction implied that as a result of the water softening effect, the reduction in capillary suction and changing the local effective stress there is a high possibility of activation and propagation of pre-existing micro fractures. In the numerical modeling phase of this research, fully coupled poro-elastoplastic partially saturated models were developed that included transversely isotropic matrix properties and bed-scale geometry. Inclusion of bed-scale features in the numerical approach provided better analysis options since different properties of the adjacent beds (including different capillary suction change) that can trigger the failure in the planes of weakness (such as the interface between the beds) can be directly included in the model while it is not possible to have that in transversely isotropic numerical modeling. This implies that conventional numerical analysis of geomechanical responses originated from spontaneous imbibition needs to be revisited. Beds-included numerical analyses indicated that since the changes in local effective stress and rock mechanical properties were not the same in adjacent quartz-rich and clay-rich beds, differential volumetric strain along the interfaces between quartz-rich and clay-rich beds would take place which in turn generated induced shear stress components on the interface planes. For the interfaces where total shear stress along them exceeded the shear strength, failure occurred. Comparing the result of micro-geomechanical (bed scale) and macro-geomechanical analysis with the results of numerical modeling at reservoir in-situ conditions would suggest that as a result of post-fracturing spontaneous water imbibition in the studied Montney Formation, the failures/micro fractures would be generated along the interfaces. Then because of the propagation of activated pre-existing micro fractures in the adjacent beds followed by coalescence with the failed interfaces, a complex micro fracture network can be formed. Accordingly, rock mass geomechanical responses and flow properties would be affected which means that any numerical modeling or analytical approach to account for the production, refracturing and any other reservoir-related analysis without considering this fact is under question mark.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling
Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
Total Pages: 568
Release: 2017-11-30
Genre: Technology & Engineering
ISBN: 0128129999

Download Hydraulic Fracture Modeling Book in PDF, Epub and Kindle

Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications
Author: Xinpu Shen
Publisher: CRC Press
Total Pages: 259
Release: 2017-03-27
Genre: Science
ISBN: 1351796283

Download Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications Book in PDF, Epub and Kindle

The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Hydraulic Fracturing in Unconventional Reservoirs

Hydraulic Fracturing in Unconventional Reservoirs
Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
Total Pages: 632
Release: 2019-06-18
Genre: Technology & Engineering
ISBN: 0128176660

Download Hydraulic Fracturing in Unconventional Reservoirs Book in PDF, Epub and Kindle

Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today’s newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. Helps readers understand drilling and production technology and operations in shale gas through real-field examples Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference Presents the latest operations and applications in all facets of fracturing

Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity

Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity
Author: Himanshu Yadav
Publisher:
Total Pages: 188
Release: 2011
Genre:
ISBN:

Download Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity Book in PDF, Epub and Kindle

Hydraulic fracturing in tight gas and shale gas reservoirs is an essential stimulation technique for production enhancement. Often, hydraulic fracturing induces fracture patterns that are more complex than the planar geometry that has been assumed in the past models. These complex patterns arise as a result of the presence of planes of weakness, faults and/or natural fractures. In this thesis, two different 3D geomechanical models have been developed to simulate the interaction between the hydraulic fracture and the natural fractures, and to observe the impact of geomechanics on the potential microseismicity in these naturally fractured formations. Several cases were studied to observe the effects of natural fracture geometry, fracturing treatment, mechanical properties of the sealed fractures, etc. on the propagation path of the hydraulic fracture in these formations, and were found to be consistent with past experimental results. Moreover, the effects of several parameters including cohesiveness of the sealed natural fractures, mechanical properties of the formation, treatment parameters, etc. have been studied from the potential microseismicity standpoint. It is shown that the impact of geomechanics on potential microseismicity is significant and can influence the desired fracture spacing. In this thesis, the presented model quantifies the extent of potential microseismic volume (MSV) resulting from hydraulic fracturing in unconventional reservoirs. The model accounts for random geometries of the weak planes (with different dip and strike) observed in the field. The work presented here shows, for the first time, a fracture treatment can be designed to maximize the MSV, when the fractures form a complicated network of fractures, and in turn influence the desired fracture spacing in horizontal wells. Our work shows that by adjusting the fluid rheology and other treatment parameters, the spatial extent of MSV and the desired fracture spacing can be optimized for a given set of shale properties.