Early Transition Metal Complexes of Carbene Donors Linked to Cyclopentadienyl Ring Analogues Or Amidine

Early Transition Metal Complexes of Carbene Donors Linked to Cyclopentadienyl Ring Analogues Or Amidine
Author: Susan Conde Guadano
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Early Transition Metal Complexes of Carbene Donors Linked to Cyclopentadienyl Ring Analogues Or Amidine Book in PDF, Epub and Kindle

The new indenyl-functionalised NHC potassium salt, 1-[3-(4,7-dimethylindenylpropyl)]-3- (2,6-diisopropylphenyl)imidazol-2-ylidenepotassium, has been synthesised. Complexes of titanium, zirconium and chromium containing this ligand and the two carbon bridge analogue, 1-[2-(4,7-dimethylindenyl)ethyl]-3-(2,6-diisopropylphenyl)imidazol-2 ylidene potassium, have been synthesised and characterised by X-ray crystallographic techniques. The following complexes were tested as catalysts for the oligomerisation of ethylene in the presence of MAO: 3-(2,6-diisopropylphenyl)-1-[2-(4,7-dimethylindenyl)ethyl]-imidazol-2-ylidene(tertbutylimido) titanium chloride, 3-(2,6-diisopropylphenyl)-1-[3-(4,7- dimethylindenyl)propyl]imidazol-2-ylidene(tert-butylimido)titanium chloride, 3-(2,6- diisopropylphenyl)-1-[3-(4,7-dimethylindenyl)propyl]imidazol-2-ylidenezirconium trichloride, 3-(2,6-diisopropylphenyl)-1-[2-(4,7-dimethylindenyl)ethyl]imidazol-2- ylidenezirconium trichloride, 3-(2,6-Diisopropylphenyl)-1-[2-(4,7-dimethylindenyl)ethyl]- imidazol-2-ylidenechromium dichloride, 3-(2,6-diisopropylphenyl)-1-[3-(4,7- (dimethylindenyl))propyl]imidazol-2-ylidene chromium dichloride, 3-(2,6-diisopropylphenyl)- 1-[3-(4,7-dimethylindenyl)propyl]-imidazol-2-ylidene chromium methyl chloride and 3-(2,6- diisopropylphenyl)-1-[2-(4,7-dimethylindenyl)ethyl]-imidazol-2-ylidenevanadium dichloride. The following alkyl chromium complexes containing 1-[2-(4,7-dimethylindenyl)ethyl]-3-(2,6- diisopropylphenyl)imidazol-2 ylidene potassium have also been synthesised: 3-(2,6- diisopropylphenyl)-1-[2-(4,7-dimethylindenyl)ethyl]-imidazol-2-ylidene chromium phenyl chloride and 3-(2,6-diisopropyl-phenyl)-1-[2-(4, 7-dimethylindenyl)ethyl]-imidazol-2-ylidene chromium dibenzyl. Chromium cations have been synthesised using as starting materials the chromium alkyl complexes. The Cr(II) complex 3-(2,6-diisopropyl-phenyl)-1-[2-(4, 7- dimethylindenyl)ethyl]-imidazol-2-ylidene chromium monochloride and a partially oxidised dimerised product were also isolated. 5-(2-chloroethyl)- 1, 2, 3, 4-tetramethylcyclopentadiene and 5-(3-chloropropyl) 1, 2, 3, 4-tetramethylcyclopentadiene were synthesised and isolated as geminal isomers for the first time. The trialkyl chromium complex, tribenzyl chromium tris(tetrahydrofuran) was synthesised and also it was used as starting material for the complexes di(benzyl)chromium bis(1, 3- diisopropylimidazol-2-ylindene) and tri(benzyl)chromium TACN. All complexes were characterised by X-ray crystallography. The imidazolium salt 3-(2.6-diisopropylphenyl)-1-[N, N-bis(2,6- diisopropylphenyl)acetamidyl] imidazolium chloride was synthesised and used as a precursor for the synthesis of amidinate-functionalised NHC zirconium and amidine-functionalised NHC silver complexes. Double deprotonation of 3-(2,6-diisopropylphenyl)-1-[N, N'-bis(2,6- diisopropylphenyl)acetamidyl] imidazolium chloride gave the amidinate-functionalised NHC ligand, 3-(2.6-diisopropylphenyl)-1-[2-N, N'bis(2,6 diisopropylphenylamidinate)ethyl]imidazol-2-ylidenepotassium. Titanium, zirconium and chromium complexes containing this ligand were synthesised and characterised by X-ray crystallographic techniques. Transmetallation of the amidine-functionalised NHC silver complex with [Rh(COD)Cl]2 and [Ir(COD)Cl]2 gave the corresponding species. Rh(amidinefunctionalised NHC)(COD)Cl reacted with Na(BAr)4 (Ar = 3,5-CF3C6H3) to give the cation Rh(amidine-functionalised NHC)(COD)]+[BAr4]-. These species were also characterised by X-ray diffraction techniques.

Transition Metal Carbene Complexes

Transition Metal Carbene Complexes
Author: Karl Heinz Dötz
Publisher:
Total Pages: 282
Release: 1983
Genre: Carbenes (Methylene compounds).
ISBN:

Download Transition Metal Carbene Complexes Book in PDF, Epub and Kindle

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands Book in PDF, Epub and Kindle

The discovery of N-heterocyclic carbenes (NHC) has dramatically affected the world of catalysis. Their inherent properties that make them excellent auxiliary ligands for catalytic processes have countless laboratories worldwide probing and exploiting every notable feature they possess. However, while there is no shortage of attention in this field of research, there has been considerably less interest in NHCs with an ability chelate to metals via a mixed-donor ligand architecture. Thus, this thesis describes the synthesis and application of a ligand set comprised of bidentate mixed-donor NHC ligands. The ligands prepared all contain a mesitylimidazol-2-ylidene core unit, but incorporate different donor-functionalized tethers. These mixed-donor NHC ligands are synthesized by using a strong base, such as KN(SiMe3)2, to deprotonate the imidazolium salt precursors. This strategy was used to effectively prepare 1-mesityl-3-(2-(mesitylamino)ethyl)imidazol-2-ylidene, Mes[CNH] and 1-mesityl-3-(2-aminoethyl)imidazol-2-ylidene, Mes[CNH2]. Mes[CNH] was found to be a convenient proligand for the synthesis of various M-NHC (M = Rh, Ir, Ru, Pd, Ni, Fe, Ag, Li) compounds. These Mes[CNH]-M complexes demonstrated the hemilabile character of the Mes[CNH] ligand forming complexes that incorporated either a coordinated or uncoordinated amino tether. Mes[CNH]M(diene)Cl, Mes[CN]M(diene) and [Mes[CNH]M(diene)]BF4(M = Rh, Ir; diene = 1,5-cyclooctadiene, 2,5-norbornadiene) were synthesized and investigated for their ability to perform hydrogenation and hydrosilylation reactions with various substrates. Mes[CNH]Ru(=CHPh)(PCy3)Cl2, Mes[CNH]Ru(=CHPh)(py)Cl2 (py = pyridine) and Mes[CNH]Ru(=CHPh)(PMe3)Cl2 were also synthesized and fully characterized. The activity of the former two Ru complexes was studied for their ability to catalyze ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROMP) reactions. In addition, the phosphine dissociation rate of Mes[CNH]Ru(=CHPh)(PCy3).

Low-coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands

Low-coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands
Author: Jessica Nicole Boynton
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN: 9781321210804

Download Low-coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands Book in PDF, Epub and Kindle

The research in this dissertation is focused on the synthesis, structural, and magnetic characterization of two-coordinate open shell (d1-d4) transition metal complexes. Background information on this field of endeavor is provided in Chapter 1. In Chapter 2 I describe the synthesis and characterization of the mononuclear chromium (II) terphenyl substituted primary amido complexes and a Lewis base adduct. These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 [mu]B owing to the fact that [lambda] (the spin orbit coupling parameter) is positive. The three-coordinated complex 2.3 had a magnetic moment of 3.77 [mu]B. The synthesis and characterization of the first stable two-coordinate vanadium complexes are described in Chapter 3. The values suggest a significant spin orbital angular momentum contribution that leads to a magnetic moment that is lower than their spin only value of 3.87 [mu]B. DFT calculations showed that the major absorptions in their UV-Vis spectra were due to ligand to metal charge transfer transitions. The titanium synthesis and characterization of the bisamido complex along with its three-coordinate titanium(III) precursor are described in Chapter 4. Compound 4.1 was obtained via the stoichiometric reaction of LiN(H)AriPr 6 with the Ti(III) complex TiCl3 *2NMe3 in trimethylamine. The precursor 4.1 has trigonal pyramidal coordination at the titanium atom, with bonding to two amido nitrogens and a chlorine as well as a secondary interaction to a flanking aryl ring of a terphenyl substituent. Compound 4.2 displays a very distorted four-coordinate metal environment in which the titanium atom is bound to two amido nitrogens and to two carbons from a terphenyl aryl ring. This structure is in sharp contrast to the two-coordinate linear structure that was observed in its first row metal (V-Ni) analogs. The synthesis and characterization of mononuclear chromium(II) terphenyl primary substituted thiolate complexes are described in Chapter 5. Reaction of the terphenyl primary thiolate lithium derivatives LiSAriPr4 and LiSArMe6 with CrCl2THF2 in a 2:1 ratio afforded complexes 5.1 and 5.2, which are the very rare examples of chromium(II) thiolates with quasi-two-coordination at the metal center. Both deviate from linearity and have S-Cr-S angles of 111.02(3)° and 107.86(3)° with secondary Cr-C(aryl ring) interactions of ca. 2.115 Å and 1.971 Å respectively. The initial work on titanium and vanadium terphenyl thiolates is described in Appendix I and II. In Chapter 6 I show that the reaction of K2COT (COT= 1,3,5,7-cyclooctatetraene, C8H8) with an aryl chromium(II) halide gave (CrAriPr4)2([mu]2-n3:n4-COT) (6.1) in which a non-planar COT ring is complexed between two CrAriPr4 moieties -- a configuration previously unknown for chromium complexes of COT. OneCr2+ ion is bonded primarily to three COT carbons (Cr--C= 2.22-2.30 Å ) as well as an ipso carbon (Cr-C= ca. 2.47 Å) from a flanking aryl ring of its terphenyl substituent. The other Cr2+ ion bonds to an ipso carbon (Cr-C= ca. 2.53 Å) from its terphenyl substituent as well as four COT carbons (Cr--C= 2.24-2.32 Å). The COT carbon-carbon distances display an alternating pattern, consistent with the non-planarity and non-aromatic character of the ring. The magnetic properties of 6.1 indicate that the Cr2+ ions have a high-spin d4 configuration with S = 2. The temperature dependence of the magnetism indicates that their behavior is due to zero-field splitting of the S = 2 state. Attempts to prepare 6.1 by the direct reaction of quintuple-bonded (CrAriPr4)2 with COT were unsuccessful. (Abstract shortened by UMI.) --Proquest.

Novel Ditopic N-heterocyclic Carbenes and Their Transition Metal Complexes

Novel Ditopic N-heterocyclic Carbenes and Their Transition Metal Complexes
Author: Charles Daniel Varnado
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Novel Ditopic N-heterocyclic Carbenes and Their Transition Metal Complexes Book in PDF, Epub and Kindle

Herein, the synthesis and study of novel ditopic N-heterocyclic carbenes (NHCs) and their transition metal complexes is reported. In chapter 1, a ligand comprised of two NHCs linked directly to each cyclopentadienyl ring of a ferrocene via their N-substituents was successfully synthesized and complexed to two iridium fragments ([Ir(1,5-cyclooctadiene)Cl] and [Ir(CO)2]. The electronic properties of these complexes were studied using IR spectroscopy, cyclic voltammetry, and other techniques. Similarly, in chapter 2, reaction of another ditopic NHC, 1,1',3,3'-tetra(tertamyl)benzobis(imidazolylidene), with two equivalents of either azidoferrocene or isothiocyanatoferrocene afforded bisadducts in which iron centers were indirectly linked through the ligand. These complexes were studied using a range of spectroscopic, electrochemical, and crystallographic techniques.

Synthesizing Strong Donor Macrocyclic Tetracarbene Metal Complexes for Catalytic Aziridination

Synthesizing Strong Donor Macrocyclic Tetracarbene Metal Complexes for Catalytic Aziridination
Author: Steven Alan Cramer
Publisher:
Total Pages: 0
Release: 2014
Genre: Ligand binding (Biochemistry)
ISBN:

Download Synthesizing Strong Donor Macrocyclic Tetracarbene Metal Complexes for Catalytic Aziridination Book in PDF, Epub and Kindle

A small ringed macrocyclic tetracarbene ligand was developed due to the inherent ability of N-heterocyclic carbenes (NHCs) to stabilize high oxidation states of transition metals. This new strong donor ligand was prepared by first synthesizing an 18-atom ringed macrocyclic tetraimidazolium ligand precursor. The tetraimidazolium can be prepared by a two-step procedure. This ligand precursor was deprotonated to prepare a monomeric platinum tetracarbene complex. A new iron macrocyclic tetra-carbene complex was synthesized by an in situ strong base deprotonation strategy of the ligand precursor. The iron tetracarbene complex was found to catalyze the aziridination of a wide array of functionalized aryl azides and a variety of substituted aliphatic alkenes, including tetra-substituted. The aziridination intermediate was probed by mass spectrometry and found to likely be and iron(IV) imido. Further investigation of this intermediate discovered that the an iron(IV) tetrazene forms when excess aryl azide was added, probably by a 1,3-cycloaddition of an additional equivalent of azide to an imido. Utilizing single crystal X-ray diffraction, NMR spectroscopy, and Mossbauer spectroscopy the metal center was formally assigned as a low spin (S = 0) iron(IV). Additional reactivity studies indicates this tetrazene is capable of performing aziridination and therefore is an additional reaction pathway in the catalytic cycle. A large disadvantage of the aforementioned iron tetracarbene catalyst is poor yield. To overcome low yields and to prepare several transition metal tetracarbene complexes, a dimeric macrocyclic tetracarbene silver complex was synthesized. This complex was shown to successfully extend transmetallation of polydentate NHCs beyond bidentate NHCs. The silver complex was utilized in the preparation of a variety of mononuclear tetracarbene complexes ranging from early first row to late third row transition metals in moderate to high. In an attempt to move toward improving solubility of the tetracarbene catalysts, a second generation variant with two borate moieties in the ligand backbone was utilized. With this dianionic 18-atom macrocyclic tetracarbene ligand, the first tetracarbene complexes of Group 13 and 14 metals were synthesized. The tin, indium, and aluminium tetracarbene complexes are structurally analogous to their catalytically active porphyrin or salen analogues.

Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies
Author: Markku Tilli
Publisher: Elsevier
Total Pages: 670
Release: 2009-12-08
Genre: Technology & Engineering
ISBN: 0815519885

Download Handbook of Silicon Based MEMS Materials and Technologies Book in PDF, Epub and Kindle

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: Silicon as MEMS material Material properties and measurement techniques Analytical methods used in materials characterization Modeling in MEMS Measuring MEMS Micromachining technologies in MEMS Encapsulation of MEMS components Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs Discusses properties, preparation, and growth of silicon crystals and wafers Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures

N-Heterocyclic Carbenes

N-Heterocyclic Carbenes
Author: Silvia Diez-Gonzalez
Publisher: Royal Society of Chemistry
Total Pages: 637
Release: 2016-11-04
Genre: Science
ISBN: 1782626816

Download N-Heterocyclic Carbenes Book in PDF, Epub and Kindle

In less than 20 years N-heterocyclic carbenes (NHCs) have become well-established ancillary ligands for the preparation of transition metal-based catalysts. This is mainly due to the fact that NHCs tend to bind strongly to metal centres, avoiding the need of excess ligand in catalytic reactions. Also, NHC‒metal complexes are often insensitive to air and moisture, and have proven remarkably resistant to oxidation. This book showcases the wide variety of applications of NHCs in different chemistry fields beyond being simple phosphine mimics. This second edition has been updated throughout, and now includes a new chapter on NHC‒main group element complexes. It covers the synthesis of NHC ligands and their corresponding metal complexes, as well as their bonding and stereoelectronic properties and applications in catalysis. This is complemented by related topics such as organocatalysis and biologically active complexes. Written for organic and inorganic chemists, this book is ideal for postgraduates, researchers and industrialists.