Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine
Author: Jonathan Robert Breen
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine Book in PDF, Epub and Kindle

Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence."

Optimizing Low Temperature Diesel Combustion (LTC-D)
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence." Book in PDF, Epub and Kindle

The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
Total Pages: 373
Release: 2011-06-03
Genre: Science
ISBN: 0309216389

Download Assessment of Fuel Economy Technologies for Light-Duty Vehicles Book in PDF, Epub and Kindle

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
Total Pages: 251
Release: 2010-07-30
Genre: Science
ISBN: 0309159474

Download Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles Book in PDF, Epub and Kindle

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
Total Pages: 812
Release: 2015-09-28
Genre: Science
ISBN: 0309373913

Download Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles Book in PDF, Epub and Kindle

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines

Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines
Author: Nathaniel Bryce Oliver
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:

Download Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines Book in PDF, Epub and Kindle

The expected growth in the heavy-duty transportation sector necessitates the development of engine technologies able to increase efficiency and reduce emissions without sacrificing power output. Previous research has demonstrated that reducing heat transfer losses from the cylinder can enable significant efficiency gains in Diesel engines. The high in-cylinder temperatures generated in this engine architecture enable the use of low-cetane fuels with the potential for low-soot operation. Low soot emissions allow the equivalence ratio to be increased to stoichiometric which increases power, and could allow the existing Diesel aftertreatment system to be replaced with a less-expensive three-way catalyst. Natural gas is a promising candidate for stoichiometric, high-temperature, Diesel-style combustion. Its high hydrogen-to-carbon ratio should be able to reduce both soot and carbon dioxide emissions, and its wide distribution as a commercial and residential fuel provides existing infrastructure to speed deployment in transportation applications. This thesis demonstrates stoichiometric, Diesel-style combustion of neat methane as a single-component surrogate for natural gas. It explores the challenges of injecting a gaseous fuel at high pressures, and demonstrates the fuel's capacity for low emissions. It then provides a preliminary investigation into multiple-injection strategies for controlling combustion behavior and emissions in a stoichiometric, high-temperature engine architecture. First, fuel system hardware is developed to enable gaseous operation and preliminary experimentation is accomplished with methane. A fuel compression system is designed to supply methane at pressures suitably high to achieve good mixing and short injection durations, and a solenoid-actuated Diesel fuel injector is modeled and modified to inject methane at these pressures. This fuel injection system is then implemented on a single-cylinder engine. An insulated piston face, air cooled head, and intake preheating achieve suitable start of injection temperatures to ignite methane. Intake preheating is varied at low equivalence ratios to determine the sensitivity of engine performance to temperature at the lowest-load, lowest-temperature conditions of interest. A sweep of equivalence ratio demonstrates soot emissions roughly four times the current EPA limit for heavy-duty vehicles and combustion efficiencies of approximately 92% at stoichiometric fuel loading. High soot levels and low combustion efficiencies are also seen at the lowest equivalence ratios investigated. This suggests poorly mixed combustion, and poor injector performance. Second, injector dynamics are examined in greater detailed, and emissions performance is characterized with improved injector performance. High-speed Schlieren imaging is able to determine the injection dynamics contributing to high low-load emissions. A parametric modeling investigation suggests that reducing the injector plunger length is able to remove flow rate oscillations seen at long injection durations, and that the addition of dry friction is able to reduce the magnitude of low-momentum post injections occurring after injector closing. Dry friction is implemented using PTFE O-rings installed between the injector body and plunger. Imaging is used to confirm that a shortened plunger is able to remove long-duration oscillations, and to determine the number of O-rings necessary to suitably reduce post injection magnitude. The improved injector is used to repeat the sweep of equivalence ratios and demonstrates improved soot emissions at all operating conditions. Most notably, low-load soot emissions are reduced by more than a factor of ten, demonstrating the effectiveness of improved injector performance for improving emissions. Techniques for further improving injector performance and potential changes to injector design are discussed. Finally, the prospects for controlling combustion in a stoichiometric, low heat rejection Diesel engine using multiple injections are discussed and experimentally investigated. The applications and effects of multiple injection strategies in traditional Diesel engines are explored, and their potential extension to stoichiometric engines is discussed. Methanol engine operation enables the use of a fast-actuating piezoinjector and the realization of short injection pulses. A range of two-injection strategies are implemented in order to determine the sensitivity of engine operation to pilot, split-main, and post-injection timing and duration. Small pilot injections are found to have control authority over rate of pressure rise and peak pressure and show some promise for improving combustion efficiency. Post injections demonstrate authority over peak pressure and combustion efficiency. All of these effects are accomplished with minimal impact on engine work output. The experiments of this thesis demonstrate that, even with course control of injection, high-temperature, stoichiometric combustion of methane is able to greatly reduce soot emissions over traditional Diesel engines. Improved injector dynamics and the implementation of multiple injection strategies further improve emissions and combustion performance, suggesting substantial room for refinement of the technology and motivating the continued development of injector hardware and injection strategies. The ability to operate a Diesel engine at stoichiometric fueled only by natural gas and to employ a three-way catalyst for emissions abatement makes this strategy a clean, efficient, high-torque, and low-cost solution for heavy-duty transportation.

Mechanical Engineering for Sustainable Development: State-of-the-Art Research

Mechanical Engineering for Sustainable Development: State-of-the-Art Research
Author: C.S.P. Rao
Publisher: CRC Press
Total Pages: 539
Release: 2019-01-04
Genre: Science
ISBN: 1351170147

Download Mechanical Engineering for Sustainable Development: State-of-the-Art Research Book in PDF, Epub and Kindle

This volume provides valuable insight into diverse topics related to mechanical engineering and presents state-of-the-art work on sustainable development being carried out throughout the world by budding researchers and scientists. Divided into three sections, the volume covers machine design, materials and manufacturing, and thermal engineering. It presents innovative research work on machine design that is of relevance to such varied fields as the automotive industry, agriculture, and human anatomy. The second section addresses materials characterization, an important tool in assessing proper materials for application-oriented jobs, and emerging unconventional machining processes that are important in design engineering for new products and tools. The section on thermal engineering broadly covers the use of viable alternate fuels, such as HHO, biodiesel, etc., with the objective of reducing the burden on petroleum reserves and the environment.