Design and Fabrication of Non-noble-metal Electrocatalysts for Oxygen Reduction Reactions

Design and Fabrication of Non-noble-metal Electrocatalysts for Oxygen Reduction Reactions
Author: Ji Liang
Publisher:
Total Pages: 446
Release: 2014
Genre: Carbon
ISBN:

Download Design and Fabrication of Non-noble-metal Electrocatalysts for Oxygen Reduction Reactions Book in PDF, Epub and Kindle

Fuel cell is a device that can directly convert the chemical energy in fuels into electricity and it has the advantages including high efficiency, high energy density and zero waste emission. However, a current fuel cell requires noble-metal catalysts (in most cased platinum, Pt) to accelerate the electrode reactions. As a result of the high cost of Pt, the commercialization of fuel cell has been severely hindered. Thus, it is exceptionally important to search for an alternative low-cost catalyst, especially on the cathode when the sluggish oxygen reduction reaction (ORR) occurs and much larger amount of Pt is employed, to bring down the over-all price of a fuel cell. With this aim, this Ph.D thesis has demonstrated the design and synthesis of a serial of high -performance Pt-free catalysts based on carbon materials. These researches include: (1) We firstly designed and constructed a series of porous g-C3N4/C composite with different pore size ranging from large mesopores (ca. 12 nm) to large macropores (ca. 400 nm) and studied the structural impact of these hybrid materials on their ORR performance. In this study, we have for the first time revealed that macropores would be more favorable for ORR in such materials rather than the conventionally believed mesopores. (2) Then, we integrated short-range ordered mesopores into the walls of macropores to form a hierarchical pore structure. By incorporating graphene into this system, its electric conductivity can be enhanced. This is the first study to natively grow graphene on porous carbon. It is found that this material shows an excellent ORR performance with synergistically enhanced activities. Tafel analysis confirms that the good performance was brought from its unique structural advantages. (3) To further enhance the catalytic activity of the above materials with ideal hierarchical structures for ORR, we have introduced high active Fe-N species into the system during the fabrication. By delicate tuning of the Fe content, we are able to control the carbon nano-materials on the hierarchical porous carbon to form graphene or carbon nanotube. As a result, the catalyst has obtained a similarity high performance as Pt as a result of the successful combination of the desired merits for ORR on it. (4) Besides the optimization of materials structure, we have also doped graphene with both N and S, and studied the influence of dual dopants on its ORR activity. We found that a significant performance enhancement was achieved by dual-doping. From density function theory calculation, we found the synergistic effect was from the spin and charge densities redistribution brought by dual-doping of S and N, leading to a larger number of ORR active sites. The studies in this thesis have provided a thorough understand of the kinetic and mechanism of the ORR process on the Pt-free catalysts. The research has not only provided materials with optimized structure and high performance for ORR, but also showed an avenue on the materials' design and construction for further study.

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions
Author: Hui Yang
Publisher: MDPI
Total Pages: 190
Release: 2019-11-01
Genre: Science
ISBN: 303921540X

Download Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions Book in PDF, Epub and Kindle

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.

Oxygen Reduction Reaction

Oxygen Reduction Reaction
Author: Kushal Sengupta
Publisher: Elsevier
Total Pages: 524
Release: 2022-06-14
Genre: Technology & Engineering
ISBN: 0323907202

Download Oxygen Reduction Reaction Book in PDF, Epub and Kindle

Oxygen Reduction Reaction: Fundamentals, Materials and Applications covers the design, synthesis and performance efficacies of the entire spectrum of oxygen reduction catalysts, extrapolating down to their applications in practical, alternative, renewable energy devices. Catalysts covered include heme inspired iron-based, heme inspired non-iron-based, non-heme-based, noble metal-based, non-noble metal-based and metal-free homogeneous and heterogeneous catalysts. The book contains critical analyses and opinions from experts around the world, making it of interest to scientists, engineers, industrialists, entrepreneurs and students. Discusses the fundamental aspects of oxygen reduction reactions Offers a comprehensive analysis of the choice and development of catalyst materials for oxygen reduction reaction Reviews emerging catalyst systems for oxygen reduction reaction Includes analyses of catalytic performance parameters to evaluate their efficacy in oxygen reduction reactions under varied operating conditions Covers the importance of oxygen reduction reaction catalysts and processes in real-life applications

Oxide Surfaces

Oxide Surfaces
Author:
Publisher: Elsevier
Total Pages: 677
Release: 2001-05-21
Genre: Science
ISBN: 0080538312

Download Oxide Surfaces Book in PDF, Epub and Kindle

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.

Non-Noble Metal Fuel Cell Catalysts

Non-Noble Metal Fuel Cell Catalysts
Author: Zhongwei Chen
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2014-04-03
Genre: Technology & Engineering
ISBN: 3527664920

Download Non-Noble Metal Fuel Cell Catalysts Book in PDF, Epub and Kindle

Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions
Author: Yongjun Feng
Publisher:
Total Pages: 1
Release: 2019
Genre: Electronic books
ISBN: 9783039215416

Download Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions Book in PDF, Epub and Kindle

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.

Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells
Author: Minhua Shao
Publisher: Springer Science & Business Media
Total Pages: 748
Release: 2013-04-08
Genre: Technology & Engineering
ISBN: 1447149114

Download Electrocatalysis in Fuel Cells Book in PDF, Epub and Kindle

Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.

Rational Design of Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction

Rational Design of Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction
Author: Zhuang Liu
Publisher:
Total Pages: 172
Release: 2018
Genre:
ISBN:

Download Rational Design of Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction Book in PDF, Epub and Kindle

ABSTRACT OF THE DISSERTATION Rational Design of Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction by Zhuang Liu Doctor of Philosophy in Chemical Engineering University of California, Los Angeles, 2018 Professor Yunfeng Lu, Chair The harvest and conversion of energy is of crucial importance for human civilization. Today, the fast growth in energy consumption, together with the environmental problems caused by fossil fuel usage, calls for renewable and clean energy supply, such as solar, wind, geothermal, and tidal energy. However, such energies are not consistent in both time and location, bringing energy storage on request. Intensive research has been focused on the development of electrochemical energy storage (EES) devices. Among these EES devices, hydrogen fuel cells and metal-air batteries have attracted the special attention because of their high theoretical energy densities. Yet, one major issue lies in the sluggish oxygen reduction reaction (ORR) that takes place at the cathodes. For example, the theoretical voltage of a hydrogen-oxygen fuel cell is 1.23 V (standard condition). However, the voltage output obtained under a meaningful current density is only about 0.7 V, where the voltage loss is primarily caused by the overpotential in the cathodes. Developing efficient electro-catalysts, which can lower the overpotential of ORR, is indispensable for achieving high performance devices. The state-of-the-art ORR electro-catalysts are generally based on platinum, which is limited by cost and scarcity. Developing electro-catalysts based on earth abundant metal elements is critical for large-scale application of fuel cells and metal-air batteries. Among the non-precious-metal catalysts (NPMCs) explored in recent decades, pyrolyzed iron-nitrogen-carbon (Fe-N-C) catalysts is widely regarded as the most promising candidate for replacing platinum due to their high activity. However, the traditional method for preparing Fe-N-C catalysts involves high-temperature pyrolysis of the precursors, which is a highly complex and unpredictable process. As-prepared Fe-N-C catalysts usually contain mixed chemical phases (e.g., Fe-based nanoparticles, Fe-N coordination site and various nitrogen species), as well as carbon scaffolds with random morphology. Such complexity makes it difficult to identify the active site and control the porous structure. Though progress has been made in improving their performance through delicate selection of precursors, such process is largely based on test-and-trial method, shedding little light on the understanding of the material. In this dissertation, we designed a novel "post iron decoration" synthetic strategy towards efficient Fe-N-C catalysts, which de-convolutes the growth of iron and nitrogen species, enables the rational design of the catalyst structure, and provides a series of effective model materials for active site probing. Specifically, liquid iron penta-carbonyl was used to wet the surface of mesoporous N-doped carbon spheres (NMC), whose porous structure is determined by the template used for preparation. The obtained Fe(CO)5/NMC complex was then pyrolyzed to generate the Fe/NMC catalysts. Through comparative study and thorough material characterization, we demonstrated that the pyridinic-N of NMC anchors the Fe atoms to form Fe-Nx active sites during pyrolysis, while the graphitic-N remains ORR active. The excessive Fe atoms were aggregated forming fine nanoparticles, which were subsequently oxidized forming amorphous-iron oxide/iron crystal core-shell structure. All the composing elements of Fe/NMC catalysts are uniformly distributed on the NMC scaffold, whose porous structure is shown to be not affected by Fe decoration, guaranteeing the effective exposure of active sites. The best performing Fe/NMC catalysts exhibited a high half-wave potential of 0.862 V, which is close to that of the benchmark 40% Pt/C catalyst. Such high activity is primarily attributed to the Fe-Nx active sites in the catalysts. While the surface oxidized Fe crystallites though not being the major active site, is revealed to catalyze the reduction of HO2-, the 2e ORR product, facilitating the 4e reduction of oxygen. Finally, such synthetic strategy is successfully extended to prepare other Me-N-C materials. Based on the established understanding of the active sites, we then complexed the active Fe(CO)5 molecules with a N-rich metal-organic framework (ZIF-8) to form a precursor, which was subsequently pyrolyzed to form Fe-NC catalysts. During the pyrolysis, Fe(CO)5 reacts homogeneously with the ZIF-8 scaffold, leading to the formation of uniform distribution of Fe-related active sites on the N-rich porous carbon derived from ZIF-8. The zinc atoms in the crystalline structure of ZIF-8 serves as thermo-sacrificial template, resulting in the formation of hierarchical pores that provide abundant easily accessible ORR active sites. In virtue of these advantageous features, the best performing Fe-NC catalyst exhibited a high half-wave potential of 0.91 V in rotating disk electrode experiment in 0.1 M NaOH. Furthermore, zinc-air battery constructed with Fe-NC-900-M as the cathode catalyst exhibited high open-circuit voltage (1.5 V) and a peak power density of 271 mW cm-2, which outperforms those made with 40% Pt/C catalyst (1.48 V, 1.19 V and 242 mW cm-2), and most noble-metal free ORR catalysts reported so far. Finally, such a synthetic method is economic and easily-scalable, offering possibility for further activity and durability improvement.