Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures
Author: Andrei D. Zaikin
Publisher: CRC Press
Total Pages: 957
Release: 2019-05-24
Genre: Science
ISBN: 1000023664

Download Dissipative Quantum Mechanics of Nanostructures Book in PDF, Epub and Kindle

Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.

Quantum Transport in Submicron Devices

Quantum Transport in Submicron Devices
Author: Wim Magnus
Publisher:
Total Pages: 292
Release: 2002-06-12
Genre:
ISBN: 9783642561344

Download Quantum Transport in Submicron Devices Book in PDF, Epub and Kindle

The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

Nanophysics: Coherence and Transport

Nanophysics: Coherence and Transport
Author:
Publisher: Elsevier
Total Pages: 641
Release: 2005-08-02
Genre: Science
ISBN: 0080461247

Download Nanophysics: Coherence and Transport Book in PDF, Epub and Kindle

The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay with disorder. Going down to even smaller scales, molecules such as carbon nanotubes, fullerenes or hydrogen molecules can now be inserted in nanocircuits. Measurements of transport through a single chain of atoms have been performed as well. Much progress has also been made in the design and fabrication of superconducting and hybrid nanostructures, be they normal/superconductor or ferromagnetic/superconductor. Quantum coherence is then no longer that of individual electronic states, but rather that of a superconducting wavefunction of a macroscopic number of Cooper pairs condensed in the same quantum mechanical state. Beyond the study of linear response regime, the physics of non-equilibrium transport (including non-linear transport, rectification of a high frequency electric field as well as shot noise) has received much attention, with significant experimental and theoretical insights. All these quantities exhibit very specific signatures of the quantum nature of transport, which cannot be obtained from basic conductance measurements. Basic concepts and analytical tools needed to understand this new physics are presented in a series of theoretical fundamental courses, in parallel with more phenomenological ones where physics is discussed in a less formal way and illustrated by many experiments. · Electron-electron interactions in one-dimensional quantum transport· Coulomb Blockade and Kondo physics in quantum dots· Out of equilibrium noise and quantum transport· Andreev reflection and subgap nonlinear transport in hybrid N/S nanosructures.· Transport through atomic contacts · Solid state Q-bits · Written by leading experts in the field, both theorists and experimentalists

Theory of Quantum Transport in Metallic and Hybrid Nanostructures

Theory of Quantum Transport in Metallic and Hybrid Nanostructures
Author: Andreas Glatz
Publisher: Springer Science & Business Media
Total Pages: 307
Release: 2006-07-26
Genre: Science
ISBN: 1402047797

Download Theory of Quantum Transport in Metallic and Hybrid Nanostructures Book in PDF, Epub and Kindle

The book reflects scientific developments in the physics of metallic compound based nanodevices presented at the NATO-sponsored Workshop on nanophysics held in Russia in the summer of 2003. The program tackles the most appealing problems. It brings together specialists and provides an opportunity for young researchers from the partner countries to interact with them and get actively involved in the most attractive and promising interdisciplinary area of contemporary condensed matter physics.

Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures

Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures
Author: Gabriela Slavcheva
Publisher: Springer Science & Business Media
Total Pages: 338
Release: 2010-06-01
Genre: Science
ISBN: 3642124917

Download Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures Book in PDF, Epub and Kindle

The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale
Author: Dmitry Ryndyk
Publisher: Springer
Total Pages: 251
Release: 2015-12-08
Genre: Science
ISBN: 3319240889

Download Theory of Quantum Transport at Nanoscale Book in PDF, Epub and Kindle

This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.

Transport in Nanostructures

Transport in Nanostructures
Author: David K. Ferry
Publisher: Cambridge University Press
Total Pages: 671
Release: 2009-08-20
Genre: Science
ISBN: 1139480839

Download Transport in Nanostructures Book in PDF, Epub and Kindle

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules
Author: Colin John Lambert
Publisher:
Total Pages: 0
Release: 2021
Genre: Electron transport
ISBN: 9780750336390

Download Quantum Transport in Nanostructures and Molecules Book in PDF, Epub and Kindle

This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.

Control of Magnetotransport in Quantum Billiards

Control of Magnetotransport in Quantum Billiards
Author: Christian V. Morfonios
Publisher: Springer
Total Pages: 258
Release: 2016-11-16
Genre: Technology & Engineering
ISBN: 3319398334

Download Control of Magnetotransport in Quantum Billiards Book in PDF, Epub and Kindle

In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating energy persistent, collimated or magnetically deflected electron paths from Fano resonances. In a multiterminal configuration, the guiding and focusing property of curved boundary sections enables magnetically controlled directional transport with input electron waves flowing exclusively to selected outputs. Together with a comprehensive analysis of characteristic transport features and spatial distributions of scattering states, the results demonstrate the geometrically assisted design of magnetoconductance control elements in the linear response regime.