Hydrology, Ecology, and Fishes of the Klamath River Basin

Hydrology, Ecology, and Fishes of the Klamath River Basin
Author: National Research Council
Publisher: National Academies Press
Total Pages: 273
Release: 2008-04-11
Genre: Technology & Engineering
ISBN: 030911506X

Download Hydrology, Ecology, and Fishes of the Klamath River Basin Book in PDF, Epub and Kindle

The Klamath River basin, which spans parts of southern Oregon and northern California, has been the focus of a prominent conflict over competing uses for water. Management actions to protect threatened and endangered fish species in the basin have left less water available for irrigation in dry years and heightened tensions among farmers and other stakeholders including commercial fishermen, Native Americans, conservationists, hunters, anglers, and hydropower producers. This National Research Council book assesses two recent studies that evaluate various aspects of flows in the Klamath basin: (1) the Instream Flow Phase II study (IFS), conducted by Utah State University, and (2) the Natural Flow of the Upper Klamath Basin study (NFS), conducted by the U.S. Bureau of Reclamation (USBR). The book concludes that both studies offer important new information but do not provide enough information for detailed management of flows in the Klamath River, and it offers many suggestions for improving the studies. The report recommends that a comprehensive analysis of the many individual studies of the Klamath river basin be conducted so that a big picture perspective of the entire basin and research and management needs can emerge.

Forecasting Seasonal Hydrologic Response in Major River Basins

Forecasting Seasonal Hydrologic Response in Major River Basins
Author: A. M. Tanvir Hossain Bhuiyan
Publisher:
Total Pages: 381
Release: 2014
Genre: Drought forecasting
ISBN:

Download Forecasting Seasonal Hydrologic Response in Major River Basins Book in PDF, Epub and Kindle

Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.

Statistical Learning for Unimpaired Flow Prediction in Ungauged Basins

Statistical Learning for Unimpaired Flow Prediction in Ungauged Basins
Author: Elaheh White
Publisher:
Total Pages: 0
Release: 2020
Genre:
ISBN:

Download Statistical Learning for Unimpaired Flow Prediction in Ungauged Basins Book in PDF, Epub and Kindle

All science is the search for unity in hidden likeness (Bronowski, 1988). There are two practical reasons to approximate processes that produce such hidden likeness: (1) prediction for interpolation or extrapolation to unknown (often future) situations; and (2) inferenceto understand how variables are connected or how change in one affects others. Statistical learning tools aid prediction and at times inference. In recent years, rapidly growing computing power, the advent of machine learning algorithms, and more user-friendly programming languages (e.g., R and Python) support applying statistical learning methods to broader societal problems. This dissertation develops statistical learning models, generally simpler than mechanistic models, to predict unimpaired flows of California basins from available data. Unimpaired flow is the flow produced by the basin in its current state, but without human-created or operated water storage, diversion, or return flows (California Department of Water Resources, Bay-Delta Office, 2016). The models predict unimpaired flows for ungauged basins, an International Association of Hydrological Sciences "grand challenge" in hydrology. In Predicting Ungauged Basins (PUB), the models learn from information at gauged points on a river and extrapolate to ungauged locations. Several issues arise in this prediction problem: (1) How we view hydrology and how we define observational units determine how data is pre-processed for statistical learning methods. So, one issue is in deciding the organization of the data (e.g., aggregate vs. incrementalbasins). Such data transformation or pre-processing is explored in Chapter 2. (2) Often, water resources problems are not concerned with accurately predicting the expectation (or mean) of a distribution but require better estimates of extreme values of the distribution(e.g., floods and droughts). Solving this problem involves defining asymmetric loss functions, which is presented in Chapter 3. (3) Hydrologic observations have inherent dependencies and correlation structure; gauge data are structured in time and space, and rivers form a network of flows that feed into one another (i.e., temporal, spatial, and hierarchical autocorrelation). These characteristics require careful construction of resampling techniques for model error estimation, which is discussed in Chapter 4. (4) Non-stationarity due to climate change may require adjustments to statistical models, especially for long-term decision-making. Chapter 5 compares unimpaired flow predictions from a statistical model that uses climate variables representing future hydrology to projections from climate models. These issues make Predicting Ungauged Basins (PUB) a non-trivial problem for statistical learning methods operating with no a priori knowledge of the system. Compared to physical or semi-physical models, statistical learning models learn from the data itself, withno assumptions on underlying processes. Their advantages lie in their fast and easy development, simplicity of use, lesser data requirements, good performance, and flexibility in model structure and parameter specifications. In the past two decades, more sophisticated statistical learning models have been applied to rainfall-runoff modeling. However, with these methods, there are issues such as the danger of overfitting, their lack of justification outside the range of underlying data sets, complexity in model structure, and limitations from the nature of the algorithms deployed. Keywords: predicting ungauged basins (PUB); rainfall-runoff modeling; asymmetric loss functions; structured data; blocked resampling methods; climate change; water resources; hydrology; statistical learning.